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The proliferation and migration dichotomy of the tumor cell invasion is examined within a two-component
continuous time random walk �CTRW� model. The balance equations for the cancer cells of two phenotypes
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modeled by a logistic growth. The overall rate of tumor cell invasion for normal diffusion and subdiffusion is
determined.
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I. INTRODUCTION

One of the main features of malignant brain cancer is the
ability of tumor cells to invade the normal tissue away from
the multicell tumor core. Invasion of healthy tissue by a solid
tumor �the core�, and the role of oxygen and nutrient delivery
have been the subject of extensive studies reflected in mod-
ern surveys, see, e.g., Ref. �1�. Experimental data for a
glioma cancer show that the proliferation rate of migratory
cells is lower in the invasion region than in the core. It turns
out that the proliferation and migration of cells are mutually
exclusive: the high motility suppresses cell proliferation and
vice versa. This phenomenon is known as the migration-
proliferation dichotomy �2,3�. The exact mechanism of
switching between the two phenotypes of glioma cells is not
known. There are several phenomenological models for this
dichotomy. One can assume that the diffusion coefficient of
cancer cells is a decreasing function of cell density �4�. As a
result the cancer cell motility is greater in the invasion zone
because of the small density of cells there. One can also
assume the dependence of the proliferation term on cell den-
sity such that the proliferation rate increases with density �5�.
An interesting dynamical model for the phenotype switch
was suggested in Ref. �6�. However, this mathematical model
involves many parameters, some of which are difficult to
estimate. Recently the authors proposed a stochastic ap-
proach for the proliferation-migration switching that in-
volves only two parameters �7�. The transport process was
formulated in the framework of the continuous time random
walk �CTRW� �8–10�. The main reason for employing the
CTRW model was to give the mesoscopic description of can-
cer cell motility in terms of the random jump distribution and
waiting times. One of the main purposes was to take into
account anomalous transport �subdiffusion� leading to slow
motility of cancer cells in the invasive zone. Among all pos-
sible cancer cell genotypes, leading to six main alternations
of malignant growth �11�, cell motility and invasion are most
important for our consideration. The standard diffusion ap-
proximation for the transport �which is the parabolic limit of
kinetics� together with a logistic growth yields an overesti-
mation of the overall growth �12,13�. Since the motility is
the most critical feature of brain cancer, causing treatment
failure, there is a need for a proper description of cancer cell

motility beyond the standard diffusion approximation. In this
connection, the hyperbolic limit of the multicellular micro-
scopic system is important �14� to take into account cellular
interaction in the description of macroscopic dynamics. A
very interesting agent-based model was developed recently
by Mansury and Deisboeck �15�. The transport process is
described in terms of the local-search mechanism performed
by tumor cells. The purpose of this “conscious” search is to
find and then invade the most permissive location in extra-
cellular matrix. A simplified scheme of migration-
proliferation dichotomy in terms of CTRW was considered in
Refs. �10,16�. It involves two steps: cell fission with the
characteristic time T f and cell transport with duration Tt.
During the time scale T f, the cells interact strongly and mo-
tility of the cells is small. During the time Tt, interaction
between the cells is weak and motility of the cells is deter-
mined by a “jump” length �Tt.

Cell invasion is a very complex process controlled by
matrix adhesion �see review Ref. �2��. It involves several
steps including receptor-mediated adhesion of cells to extra-
cellular matrix �ECM�, matrix degradation by tumor-secreted
proteases �proteolysis�, detachment from ECM adhesion
sites, and active invasion into intercellular space created by
protease degradation. One of the purposes of this paper is to
give a description of this complicated cell transport in terms
of a nonsymmetrical random walk model with memory ef-
fects. Chemotaxis and haptotaxis are taken into account by
the biased random walk of cells that respond to external sig-
nals without alteration and migrate away from the tumor
core. Matrix adhesion effects are modeled by using the
heavy-tailed waiting time distributions that lead to subdiffu-
sion of tumor cells.

II. TWO-COMPONENT CTRW WITH PROLIFERATION

A. Balance equations

In this paper we present a detailed analysis of the migra-
tion and proliferation of glioma cells in the framework of a
two-component continuous time random walk with prolifera-
tion. The paper is an essential extension of our previous
work �7� with new results and examples. Based on experi-
mental observations of migration-proliferation dichotomy,
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we assume that the process of tumor cell invasion consists of
two states. In state 1 �migratory phenotype� the cells ran-
domly move but there is no cell proliferation. In state 2 �pro-
liferating phenotype� the cancer cells do not migrate and
only proliferation takes place. To describe the random
switching between the two phenotypes, we employ the two-
state Markov chain model. The cell of type 1 remains in state
1 during a waiting time �1 and then switches to a cell of type
2. After a waiting time �2, spent in state 2, it switches back to
a cell of type 1. Both waiting times �1 and �2 are mutually
independent random variables exponentially distributed with
parameters �1 and �2:

P��k� = �k exp�− �k�k� k = 1,2. �1�

Here the parameters �k are the switching rates, namely, �1 is
the switching rate from state 1 to 2, while �2 determines the
transition rate 2→1. Note that the generalization for the
renovation processes with arbitrary probability densities for
switching times is straightforward. An important feature of
the present analysis is an observation of the influence of the
migration-proliferation dichotomy on the overall invasion
rate of cancer cells. In what follows we show how the overall
propagation rate u depends on the parameters �k.

We consider the growing tumor spheroid consisting of the
tumor core with a high density of cells and the outer invasive
zone where the cell density is much smaller. To describe the
cancer cells of the two phenotypes we introduce the density
of the cells of migrating phenotype n1�t ,x� and the density of
the cells of proliferating phenotype n2�t ,x�. The balance
equations for n1�t ,x� and n2�t ,x� are

n1�t,x� = n1�0,x���t�e−�1t + �
0

t �
Rd

n1�t − s,x − z�

���s,z�e−�1sdzds + �2�
0

t

n2�t − s,x���s�e−�1sds ,

�2�

n2�t,x� = n2�0,x�e−�2t + �
0

t

f�n1�t − s,x�,n2�t − s,x��e−�2sds

+ �1�
0

t

n1�t − s,x�e−�2sds , �3�

where ��s ,z� is the joint probability density function of
making a jump z in the time interval s to s+ds, and Rd
denotes the integration over d-dimensional space. The one
dimensional case �d=1� was considered in Ref. �7�.

Cell migration �random jumps� involves a receptor-
mediated adhesion to matrix proteins, matrix degradation by
proteases, detachment from adhesion sites, active invasion
into “new” intercellular space formed by degradation, etc. It
would be extremely difficult to build up a rigorous determin-
istic model for this process. Since these factors are too many,
we believe that a good alternative to such a model is a ran-
dom walk with memory effects. The active mechanism of
migration of tumor cells involves small random jumps and
delay time between jumps. The latter might be of the same

order as the proliferation time. This dynamics is obviously
random and its distribution is given by the probability den-
sity function �PDF� ��s�

��s� = �
Rd

��s,z�dz , �4�

where ��s ,z� is the joint PDF.
Equation �2� is the conservation law for cells of type 1 at

time t at position x. The first term on the right-hand side
n1�0,x���t�e−�1t represents cells of type 1 that stay up to
time t at position x such that no jump occurred, and no
switch took place. This term involves the function ��t�

��t� = 1 − �
0

t

��s�ds �5�

which is the probability that a cell of type 1 makes no jump
until time t. Note that the exponential factor

e−�kt = 1 − �
0

t

P��k�d�k, k = 1,2

is the probability that cells of phenotypes k do not switch
until time t. The independence of the random jumps and
switching gives us the probability ��t�e−�1t while the first
factor n1�0,x� is the initial density of cells of type 1 at x.

The second term

�
0

t �
Rd

n1�t − s,x − z���s,z�e−�1sdzds

gives us the number of cells of type 1 arriving at x up to time
t. We assume the following random mechanism of migration:
the cell of type 1 at time t-s at position x-z waits a random
time s before jumping a distance z at position x and remains
a cell of type 1. The last term

�2�
0

t

n2�t − s,x���s�e−�1sds

represents the number of cells of type 2 that switch to the cell
of type 1 up to time t and remain the cells of type 1 �the
factor e−�1s�. It also takes into account the fact that if transi-
tion 2→1 happens at time t−s, then no jump takes place
during the remaining time s �the factor ��s��.

Equation �3� describes the balance of cells of proliferating
phenotype �no jumps�. The first term on the right-hand side
n2�0,x�e−�2t is the density of cells of type 2 that stay up to
time t at position x such that no switch 2→1 takes place.
The second term on the right-hand side

�
0

t

f�n1�t − s,x�,n2�t − s,x��e−�2sds

is the proliferation rate for cell of type 2, which occurs pro-
viding that no switch takes place up to time t. The last term
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�1�
0

t

n1�t − s,x�e−�2sds �6�

gives the number of cells of type 1 switching to the state 2
over the time interval �0, t�.

It is well known that the CTRW modeling is a standard
technique for studying anomalous diffusion �8,9�. We em-
ploy this technique to take into account subdiffusion that
leads to slow motility of cancer cells in the invasive zone. In
this paper each random step of a cancer cell is characterized
by a waiting time s and a jump z which are distributed ac-
cording to the joint PDF ��s ,z�. This PDF can be written in
a decoupled form

��s,z� = ��s���z� , �7�

where ��s� is waiting time PDF and ��z� is the PDF of cell
jumps. This form corresponds to the case when the random
waiting time and the individual displacement are indepen-
dent. The subdiffusion regime occurs when the mean waiting
time �t�=	0

������d� is infinite and the spherically symmetri-
cal PDF ��
x
�=��r� has a finite variance 	2=	r2��r�dr
�,
where r is the radius of the spheroid. If the asymptotic be-
havior for the waiting-time density ��t� for large t is t−1−�

with 0
�
1, the mean waiting time �t� is infinite and the
mean-square displacement 	2t� corresponds to subdiffusion
�8,9�. When �t� is finite, there is normal diffusion: the mean-
square displacement is Dt, where D=	2 /6�t� for the three-
dimensional case �d=3�. Superdiffusion takes place when the
variance 	2 is infinite. Note that in many of the superdiffu-
sion realization cases, the decoupling assumption of Eq. �7�
can be inappropriate �17�. In what follows we consider only
two regimes: normal diffusion and subdiffusion.

B. Integrodifferential equations

The interesting feature of the balance Eqs. �2� and �3�
with ��s ,z�=��s���z� is that they can be rewritten as a sys-
tem of integrodifferential equations

�n1

�t
= �

0

t

��t − s��
Rd

�n1�s,x − z� − n1�s,x����z�dzds

− �1n1 + �2n2, �8�

�n2

�t
= f�n1,n2� + �1n1 − �2n2, �9�

where the memory kernel ��t� has to be determined. Let us
derive these equations from Eqs. �2� and �3� by using the
Laplace transform for ��t�, and the Fourier transform for
��x�

�̃�H� = L���t�� = �
0

�

��t�e−Htdt,

�̂�k� = F���x�� = �
Rd

��x�eik·xdx �10�

and the Fourier-Laplace �FL� transform for the densities
nk�t ,x�

n̂̃k�H,k� = FL�nk�t,x�� = �
Rd
�

0

�

nk�t,x�e−Ht+ik·xdtdx,

k = 1,2. �11�

Equation �2� with ��s ,z�=��s���z� in the FL space reads

n̂̃1�H,k� = n̂1�0,k�
1 − �̃�H + �1�

H + �1
+ n̂̃1�H,k��̂�k��̃�H + �1�

+ �2n̂̃2�H,k�
1 − �̃�H + �1�

H + �1
. �12�

To perform the FL transform in Eq. �11� we use the standard
convolution property

n̂̃1�H,k��̂�k��̃�H�

=� �
0

� ��
0

t� n1�t − s,x − z���z���s�dzds�
�e−Ht+ikxdtdx .

Rearranging Eq. �12� and introducing the “memory” kernel
��t� in term of its Laplace transform

�̃�H� =
�H + �1��̃�H + �1�

�1 − �̃�H + �1��
, �13�

we obtain

Hn̂̃1�H,k� − n̂1�0,k� = n̂̃1�H,k��̃�H���̂�k� − 1� + �2n̂̃2�H,k�

− �1n̂̃1�H,k� . �14�

Applying the FL transform inversion to Eq. �14�, we obtain
the integrodifferential Eq. �8�. To find the FL transform of
Eq. �3�, we denote the nonlinear proliferation term by
Z�t ,x�= f�n1�t ,x� ,n2�t ,x��. Its FL transform is

Z̃
ˆ �H,k� = LF�Z�t,x�� . �15�

We have from Eq. �3�

n̂̃2�H,k� = n̂2�0,k�
1

H + �2
+ Z̃

ˆ �H,k�
1

H + �2

+ �1n̂̃1�H,k�
1

H + �2
, �16�

where Z̃
ˆ �H ,k� / �H+�2�=LF	0

t Z�t−s ,x�e−�2sds. Rearranging
Eq. �16� in the following form:

Hn̂̃2�H,k� − n̂2�0,k� = Z̃
ˆ �H,k� + �1n̂̃1�H,k� − �2n̂̃2�H,k� ,

and applying the FL inversion and using Eq. �15�, we obtain
Eq. �9�.

C. Probability density function for cell jumps

Now we are in a position to discuss different approxima-
tions for the probability density function for cell jumps ��z�.
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Of course this function is not symmetrical in general. The
cells of the migrating phenotype are biased to migrate away
from the tumor spheroid core. The reasons for this asym-
metrical creeping are the nonuniform nutrient concentration
�chemotaxis�, the gradient of cell adhesion sites �haptotaxis�,
etc. Experimental observations suggest that cell jumps are
controlled by adhesion of tumor cells to extracellular matrix
and jump lengths are very small �2�. Therefore ��z� is a
rapidly decaying function for large 
z
. In other words, the
density of tumor cells varies on the scales that are much
larger than the typical jump length. Thus one can use the
Taylor series in Eq. �2� with ��s ,z�=��s���z� expanding
n1�t−s ,x−z� in z and truncate the series at the second mo-
ment. This truncation for rapidly decaying function ��z� is a
well defined procedure, since the higher moments become
progressively smaller �18�. We have

�
Rd

n1�t − s,x − z���z�dz = n1�t − s,x� − �zi�
�n1

�xi

+
1

2
�zizj�

�2n1

�xi � xj
+ ¯ , �17�

where the Einstein rule for summation over repeated indices
i and j is implied, and angular brackets denote averaging
with respect to ��z�

�zi� = �
Rd

zi��z�dz, �zizj� = �
Rd

zizj��z�dz . �18�

Substitution of Eq. �17� into Eq. �2� with the decouple prop-
erty ��s ,z�=��s���z� yields

n1�t,x� = n1�0,x���t�e−�1t + �
0

t

n1�t − s,x���s�e−�1sds

− �zi��
0

t �n1

�xi
��s�e−�1sds +

1

2
�zizj�

��
0

t �2n1

�xi � xj
��s�e−�1sds + �2

��
0

t

n2�t − s,x���s�e−�1sds . �19�

Note that the third term on the right-hand side of this equa-
tion reflects a bias of random walk in the direction �z�. In
fact, this equation involves the first two moments for random
jumps �zi� and �zizj�. It can be rewritten as the integrodiffer-
ential equation

�n1

�t
+ �zi��

0

t

��t − s�
�n1

�xi
ds =

1

2
�zizj��

0

t

��t − s�
�2n1

�xi � xj
ds

− �1n1 + �2n2. �20�

If the cell jumps are normally distributed then the character-
istic function of ��z� is

�̂�k� = expiaiki −
1

2
	ijkikj� , �21�

where the summation convection is implied for the repeated
index. The positive definite matrix 	ij can be written in terms
of the first two moments

	ij = �zizj� − �zi��zj� . �22�

The probability density function ��z� is

��z� =
1

�2�d/2�det 	�1/2exp−
1

2
�	−1�ij�zi − �zi���zj − �zj��� ,

�23�

where �	−1�ij is an inverse matrix. If we assume that there is

no bias �zj�=0 and �zizj�=0 for i� j, and �zi
2�=

�z2�

d = 	2

d . Then
Eq. �19� takes the form

n1�t,x� = n1�0,x���t�e−�1t + �
0

t

n1�t − s,x���s�e−�1sds

+
	2

2d
�

0

t

�n1�t − s,x���s�e−�1sds + �2�
0

t

n2�t

− s,x���s�e−�1sds . �24�

From the last equation one obtains integrodifferential equa-
tion for n1 in d dimension

�n1

�t
=

	2

2d
�

0

t

��t − s��n1�s,x�ds − �1n1 + �2n2. �25�

Note that the one-dimensional case �d=1� was analyzed in
Ref. �7�.

D. Memory kernel and waiting time probability density
function

The formula

�̃�H� =
�H + �1��̃�H + �1�

1 − �̃�H + �1�
�26�

gives us the relationship between the transport memory ker-
nel ��t� in Eq. �20� and the waiting-time PDF ��t� in terms
of their Laplace transforms. It should be emphasized that it is
impossible to find an explicit expression for the memory
kernel ��t� for arbitrary choices of the waiting-time PDF
��t�. However, we are concerned with the rate of the spread-
ing of tumor cells. In what follows we show that this rate
depends on the Laplace transform �̃�H� rather than ��t�.
That is why the formula �26� is so important for our analysis.
It follows from Eq. �26� that the transport kernel ��t� de-
pends on the parameter �1. This means that we cannot sepa-
rate the transport process and random switching in general.
This phenomenon has been discussed recently in the litera-
ture on anomalous transport with reactions �19–21�. Let us
consider three typical distributions for the waiting-time PDF
��t�.

�i� Exponential distribution. The random waiting time is
exponentially distributed if it has a density

SERGEI FEDOTOV AND ALEXANDER IOMIN PHYSICAL REVIEW E 77, 031911 �2008�

031911-4



��t� = �e−�t. �27�

The Laplace transform for this distribution is

�̃�H� = �
0

�

�e−�te−Htdt =
�

� + H
�28�

and

�̃�H� =
�H + �1��̃�H + �1�

�1 − �̃�H + �1��
= � , �29�

therefore ��t�=���t�. In this case the kernel ��t� is indepen-
dent of �1. Thus we have a classical system of convection-
diffusion-reaction equations

�n1

�t
+ vi

�n1

�xi
= Dij

�2n1

�xi � xj
− �1n1 + �2n2, �30�

�n2

�t
= f�n1,n2� + �1n1 − �2n2, �31�

with the diffusion tensor Dij =��zizj� /2 and the velocity v
=��z�.

�ii� Gamma distribution. The waiting-time PDF ��t� cor-
responds to the family of gamma distributions with param-
eters m and �:

��t� =
�mtm−1e−�t

��m�
. �32�

Then �̃�H�= � �

�+H
�m and

�̃�H� =
�H + �1��m

�� + H + �1�m − �m . �33�

For example, if m=2

�̃�H� =
�2

2� + H + �1
, �34�

and the memory kernel is

��t� = �2e−�2�+�1�t. �35�

The main result here is that the transport memory kernel
depends on the parameter �1. The integrodifferential equa-
tion for cells of migratory phenotype takes the form

�n1

�t
+ vi��

0

t

e−�2�+�1�s�n1

�xi
ds

= Dij��
0

t

e−�2�+�1�s �2n1

�xi � xj
ds − �1n1 + �2n2. �36�

The integrodifferential Eq. �36� can be rewritten as the hy-
perbolic reaction-transport equation, and corresponding trav-
eling wave solutions can be found as in Refs. �22,23� �see
also Ref. �14��.

�iii� Power law waiting time distribution. The power law
��t��1 / �1+ t /��1+� with 0
�
1 is used in many applica-
tions �9�. Here we use � which is �in a general case� not

equal to 1 /� to stress the fractional property of cell dynam-
ics. It is more convenient to use its Laplace transform

�̃�H� =
1

1 + �H��� . �37�

Then

�̃�H� =
�H + �1��̃�H + �1�

�1 − �̃�H + �1��
=

�H + �1�1−�

�� . �38�

III. CANCER SPREADING RATE

The overall rate u at which cancer cells spread is usually
defined as the velocity of the experimentally detectable tu-
mor front. In the generic Fisher equation setting the propa-
gation rate is u=2�DU, where D is the diffusion coefficient
and U is the proliferation rate �18�. The speed of this front is
determined by the processes taking place at the leading edge
of the cells’ profile. In this paper we have a system of Eqs.
�2� and �3� and we define the overall spreading rate as the
speed of the traveling wave solution of this system. For
front-like initial conditions, the fronts for both densities n1
and n2 quickly achieve the stationary forms that propagate
with a constant rate u. The main purpose here is to find the
dependence of this propagation rate on the statistical charac-
teristics of the random switching process �1 and �2, two
moments for random jumps: �zi� and �zizj� and waiting time
distribution ��t�. We use the logistic growth for cell prolif-
eration

f�n1,n2� = Un2�1 − �n1 + n2�/K� , �39�

where U is the cell proliferation rate and K is the carrying
capacity of the environment. We assume that the initial tu-
mor spheroid of radius R has the following distribution of
cells:

nk�0,x� = �Ak if �
i=1

d

xi
2 � R2,

0 otherwise,
� �40�

where positive constant A1 and A2 represent the stable equi-
librium points of the densities n1 and n2. They can be found
from two equations A1+A2=K and �1A1=�2A2:

A1 =
�2K

�1 + �2
, A2 =

�1K

�1 + �2
. �41�

We assume that the characteristic length scale for the tumor
front is much smaller than the radius of the initial tumor
spheroid. We also assume that the bias acts in the radial
direction such that �z�= �r�er. These assumptions allow us to
consider the propagation of the effective plane front in the
radial direction, neglecting all curvature effects. We expect
that the long time development leads to the propagation of
traveling fronts of permanent forms: n1�r−ut� and n2�r−ut�,
where the rate u is common to both densities n1 and n2.

The balance equations for densities n1 and n2 are of the
form
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n1�t,r� = n1�0,r���t�e−�1t + �
0

t

n1�t − s,r���s�e−�1sds

− �r��
0

t �n1

�r
��s�e−�1sds +

	2

2d
�

0

t �2n1

�r2 ��s�e−�1sds

+ �2�
0

t

n2�t − s,r���s�e−�1sds , �42�

n2�t,r� = n2�0,r�e−�2t + U�
0

t

n2�t − s,r�

��1 − �n1�t − s,r� + n2�t − s,r��/K�

�e−�2sds + �1�
0

t

n1�t − s,r�e−�2sds . �43�

This system of equations is a starting point for the analysis of
plane front propagation in a radial direction.

A. Hyperbolic scaling and Hamilton-Jacobi equation

The objective here is to find the rate u without resolving
the shape of the traveling waves �12,24�. For this purpose we
use a hyperbolic scaling r→r /� , t→ t /� and the rescaled
density nk

��t ,r�=nk�t /� ,r /�� �see the Appendix�. We write the
density nk

��t ,r� in the exponential form

nk
��t,r� = Ak exp−

G��t,r�
�

�, k = 1,2, �44�

where the non-negative function G��t ,r� describes the loga-
rithmic asymptotic of both densities and plays a very impor-
tant role. It follows from Eq. �44� that as long as the function

G�t,r� = lim
�→0

G��t,r� �45�

is positive, the rescaled density nk
��t ,r�→0 as �→0. We may

argue that the equation G�t ,r�t��=0 gives us the spreading
front position r�t� in the long-time and large-distance limit
�12�. Substitution of the exponential transformation �44� into
the equations for the rescaled densities ni

��t ,r� and taking the
limit �→0 yield two equations for A1 and A2. These equa-
tions have a nontrivial solution when the corresponding de-
terminant is equal to zero �see the Appendix�. It gives the
following equation for G�t ,r�:

�1 − �1 + �r�
�G

�r
+

	2

2d
 �G

�r
�2��

0

�

e�G/�ts��s�e−�1sds�
��1 − U�

0

�

e�G/�tse−�2sds�
− �1�2�

0

�

e�G/�ts��s�e−�1sds�
0

�

e�G/�tse−�2sds = 0.

�46�

In terms of the Laplace transform �̃�H�=L���t��, Eq. �46�
can be rewritten as a generalized Hamilton-Jacobi equation

1 − �1 + �r�
�G

�r
+

	2

2d
 �G

�r
�2��̃−

�G

�t
+ �1�

=
�1�2�1 − �̃�− �G

�t + �1��
�− �G

�t + �1��− �G
�t + �2 − U� . �47�

Note that inferring Eq. �47�, we do not make any assump-
tions regarding waiting time PDF ��s�.

B. Wavefront velocity

Let us introduce the Hamiltonian function H and the gen-
eralized momentum p

H = −
�G

�t
, p =

�G

�r
. �48�

Then Hamilton-Jacobi Eq. �47� takes the form of the qua-
dratic equation

�r�p +
	2p2

2d
−

1

�̃�H + �1�
�1 −

�1�2�1 − �̃�H + �1��
�H + �1��H + �2 − U�

� + 1

= 0. �49�

This equation is very important because it allows us to find
the spreading rate u

u =
�H

�p
=

H

p�H�
. �50�

We may equivalently write u=minH� H
p�H� �, so u= H

p�H� , where

H can be found from equation

�p

�H
=

p�H�
H

. �51�

Let us illustrate this formula by using the classical Fisher
equation

�n

�t
= D

�2n

�x2 + Un�1 − n�

for which the Hamiltonian is H=Dp2 /2+U. Using this ex-
pression, we obtain

p�H� = 2H − 2U

D
�1/2

. �52�

From Eqs. �51� and �52� we obtain H=Dp2�H�=2U, and
therefore, the spreading rate for the Fisher equation is uF
=H / p�H�=2�DU�1/2. This is the classical propagation speed.

In what follows we consider a case when the mean jump
length in the radial direction is zero, �r�=0. If the random
waiting time is exponentially distributed �Eq. �27��: ��t�
=�e−�t, then the equation for the migratory cells is

�n1

�t
= D

�2n1

�r2 − �1n1 + �2n2. �53�

The momentum p�H� can be found from Eq. �49�
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p2 =
�H + �1�

D
−

�1�2

D�H + �2 − U�
. �54�

If we assume that �1=�2, we can find from Eq. �50� that
H=U and Eq. �54� p= �U /D�1/2, and H=U. Therefore, the
spreading rate is u0= �UD�1/2 which is half of the classical
Fisher-KPP �Fisher-Kolmogorov-Petrovskii-Piskunov� pro-
pagation speed uF. This result shows that the propagation
rate is independent of the random migration-proliferation
switching for �1=�2. When �1��2 one can find the ratio of
the propagation rate u and u0= �UD�1/2 as

 u

u0
�2

=
4�H + �2 − U�3��H + �2 − U��H + �1� − �1�2�

��H + �2 − U�2 + �1�2�2 ,

�55�

where H is determined by Eq. �51�. For the fixed values of
�1 and U, the wavefront propagation rate versus �2 /�1 is
depicted in Fig. 1.

For the power law distribution ��t���� / t�1+� with 0
�

1, the mean waiting time is divergent: �t�=�. This as-
sumption alone leads to the temporal fractional differential
operator and corresponding anomalous diffusion Eq. �9�. The
mean squared displacement for mobile cells is

�r2�t�� =
4D�

��1 + ��
t�, �56�

where D�=	2 /2d��.
Let us find the overall propagation of cancer cells as a

result of interaction of subdiffusion �56�, logistic prolifera-
tion �39�, and random migration-proliferation switching �1�.
For the Laplace transform �̃�H�= �1+ �H����−1, the momen-
tum p�H� can be found from Eq. �49�:

p2 =
�H + �1��

D�

−
�1�2�H + �1��−1

D��H + �2 − U�
. �57�

This formula, together with Eq. �50�, allows us to find the
overall propagation rate of tumor cells u� for the subdiffu-
sion case. The case �=1 corresponds to normal diffusion.
One can find from Eqs. �50�, �54�, and �57� the ratio of the
anomalous propagation rate u� and the normal rate u deter-
mined by Eq. �55�:

u�

u
= �H�� + �1��1−�/2. �58�

Since the “microscopic” time � is much smaller than the
characteristic “cell proliferation” time U−1 and switching
time �1

−1 and H��U, we conclude that H�+�1�
1. This
condition of H�U is also confirmed by numerical solutions
of Eqs. �51�, �54�, �57�, and �58� �see inset in Fig. 1�. It
follows from Eq. �58� that the ratio u� /u increases up to 1
with � in the interval 0
�
1. This means that normal dif-
fusion leads to overestimation of the overall cancer spread-
ing. Note that the advantage of balance Eqs. �2� and �3� is
that they are related to a “mesoscopic” description of migra-
tory cancer cells, and give us the statistical meaning of the
phenomenological reaction transport Eq. �20�.

IV. REACTION-TRANSPORT EQUATIONS

The influence of the migration-proliferation dichotomy on
the overall propagation rate is an important factor in glioma
development. The Markovian switching between two pheno-
types described by Eq. �1� can be generalized for the case
when memory effects are taken into account. The system of
integrodifferential Eqs. �8� and �9� takes the form

�n1

�t
= �

0

t

��t − s��
Rd

�n1�s,x − z� − n1�s,x����z�dzds

+ �
0

t

��2�t − s�n2�s,x� − �1�t − s�n1�s,x��ds , �59�

�n2

�t
= f�n1,n2� − �

0

t

��2�t − s�n2�s,x� − �1�t − s�n1�s,x��ds ,

�60�

where �i�t� is the memory kernel for non-Markovian switch-
ing. Combining Eqs. �59� and �60� one finds that a total
density n=n1+n2 obeys the equation

�n

�t
= �

0

t

��t − s��
Rd

�n1�s,x − z� − n1�s,x����z�dzds

+ f�n1,n2� . �61�

This equation does not restrict any possible random transi-
tions between migration and proliferation phenotypes. More-
over, it can be a starting point of the glioma modeling in the
framework of the differential equations. It can be rewritten in
terms of the total density alone, if we introduce the probabili-
ties pj such that n1= p1n and n2= p2n. By using the logistic
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FIG. 1. �Color online� Propagation speed �u /u0�2 vs �2 /�1. The
values of �1 /U= �3,4.5,6.5� correspond to plots �1�, �2�, and �3�,
respectively. The inset corresponds to a solution of Eqs. �57� and
�58� for the same values of �1 /U and �=0.7.
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growth for cell proliferation �39� and rescaling p2n→n, we
obtain

�n

�t
= p1�

0

t

��t − s��
Rd

�n�s,x − z� − n�s,x����z�dzds

+ Up2n�1 − n/K� . �62�

Let us find these probabilities for Markovian switching �1�.
In fact there are four characteristic times in our model: pro-
liferation time �U−1 for logistic growth�, the transport time
�t�=	0

�t��t�dt �average waiting time�, and two switching
times �1

−1 and �2
−1. If we assume that both switching times

are small compared to the growth time U−1 and transport
time �t�, the “fast” switching process can be averaged. The
“fast” local dynamics of densities n1 and n2 are governed by
the equations

�n1

�t
= − �1n1 + �2n2,

�n2

�t
= �1n1 − �2n2. �63�

The solution for any x is

n1�t� =
�2

�1 + �2
+ �n1�0� −

�2

�1 + �2
�e−��1+�2�t, �64�

n2�t� =
�1

�1 + �2
+ �n2�0� −

�1

�1 + �2
�e−��1+�2�t. �65�

For the large intermediate time T such that �1
−1

��2
−1�T�U−1, we have a local equilibrium, that is, n1

=
�2

�1+�2
and n2=

�1

�1+�2
. If we consider now the transport and

proliferation, it is clear that the total number of cancer cells n

splits locally to
�2

�1+�2
n of migrating phenotype and

�1

�1+�2
n of

proliferating phenotype. So

n1�t,x� =
�2

�1 + �2
n�t,x�, n2�t,x� =

�1

�1 + �2
n�t,x� .

�66�

This means that we have only one variable n�t ,x� for which
we can formulate a balance equation considering the trans-
port for n1�t ,x� and proliferation for n2�t ,x�. The probabili-
ties are

p1 =
�2

�1 + �2
, p2 =

�1

�1 + �2
. �67�

In this limiting case, the model can be formulated in terms of
the linear balance equation for the total number of cancer
cells per unit volume n�t ,x�

n�t,x� =
�2

�1 + �2
�

0

t �
Rd

n�t − s,x − z���s���z�dzds

+
�1

�1 + �2
U�

0

t

n�t − s,x�ds . �68�

This reaction-transport equation can also be used to study the
wavefront propagation in the framework of the Hamiltonian-
Jacobi approach.

V. CONCLUSION

We developed a probabilistic approach for a migration-
proliferation dichotomy in the spreading of tumor cells in the
invasive zone. We derived the balance equations for densities
of cancer cells of two phenotypes. In the migratory state the
cells randomly move but there is no cell proliferation, while
in the proliferating state the cancer cells do not migrate and
only proliferation takes place. We took into account random
switching between cell proliferation and migration by using
a two-state Markov chain. The transport of tumor cells is
formulated in terms of the CTRW with an arbitrary waiting
time distribution, while proliferation is modeled by a nonlin-
ear function of both densities. We found the overall rate of
tumor cell invasion for both normal diffusion and subdiffu-
sion. The advantage of our probabilistic approach is that it
allows us to take into account anomalous �subdiffusive�
transport within the general scheme of migration, prolifera-
tion, and phenotype switching. We showed the equivalence
of balance equations to a system of integrodifferential equa-
tions involving memory effects for the transport of mobile
cells. By using a hyperbolic scaling and Hamilton-Jacobi for-
malism we derived formulas for the overall spreading rate of
cancer cells. We showed that the memory effects �subdiffu-
sion� leads to a decrease in propagation rate compared to a
standard diffusion approximation for transport.
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APPENDIX

Rescaling of Eqs. �42� and �43�, we obtain

n1
��t,r� = n1

��0,r���t�e−�1t/� + �
0

t/�

n1
��t − �s,r���s�e−�1sds

− ��r��
0

t/� �n1
�

�r
��s�e−�1sds +

�2	2

2d

��
0

t/� �2n1
�

�r2 �t − �s,r���s�e−�1sds + �2

��
0

t/�

n2
��t − �s,r���s�e−�1sds , �A1�

n2
��t,r� = n2

��0,r�e−�2t/� + U�
0

t/�

n2
��t − �s,r�

��1 − �n1
� + n2

��/K�e−�2sds + �1

��
0

t/�

n1
��t − �s,r�e−�2sds . �A2�

SERGEI FEDOTOV AND ALEXANDER IOMIN PHYSICAL REVIEW E 77, 031911 �2008�

031911-8



Substitution of the exponential transformation nk
��t ,r�

=Ak exp�−
G��t,r�

�
� into these equations and accounting for ini-

tial conditions yields

A1 = A1�
0

t/�

exp�G��t,r� − G��t − �s,r�
�

���s�e−�1sds − ��r�A1

�expG��t,r�
�

��
0

t/� �

�r
exp−

G��t − �s,r�
�

�
���s�e−�1sds +

�2	2A1

2d
expG��t,r�

�
��

0

t/� �2

�r2

�exp−
G��t − �s,r�

�
���s�e−�1sds + �2A2

��
0

t/�

exp�G��t,r� − G��t − �s,r�
�

���s�e−�1sds , �A3�

A2 = UA2�
0

t/�

exp�G��t,r� − G��t − �s,r�
�

�
��1 −

A1 + A2

K
exp−

G�

�
��e−�2sds

+ �1A1�
0

t/�

exp�G��t,r� − G��t − �s,r�
�

�e−�2sds .

�A4�

Taking the limit �→0 we have

A1 = A1�
0

�

e�G/�ts��s�e−�1sds

+ A1�r�
�G

�r
�

0

�

e�G/�ts��s�e−�1sds

+
	2A1

2d
 �G

�r
�2�

0

�

e�G/�ts��s�e−�1sds

+ �2A2�
0

�

e�G/�ts��s�e−�1sds , �A5�

A2 = UA2�
0

�

e�G/�tse−�2sds + �1A1�
0

�

e�G/�tse−�2sds .

�A6�

Then Eqs. �A5� and �A6� can be rewritten as a system of
linear equations for A1 and A2

A1�1 − �1 + �r�
�G

�r
+

	2

2d
 �G

�r
�2��

0

�

e�G/�ts��s�e−�1sds�
− A2�2�

0

�

e�G/�ts��s�e−�1sds = 0, �A7�

A1�1�
0

�

e�G/�tse−�2sds − A2�1 − U�
0

�

e�G/�tse−�2sds� = 0.

�A8�

This system has a nontrivial solution when the corresponding
determinant is equal to zero:

�1 − �1 + �r�
�G

�r
+

	2

2d
 �G

�r
�2��

0

�

e�G/�ts��s�e−�1sds�
��1 − U�

0

�

e�G/�tse−�2sds� − �1�2

��
0

�

e�G/�ts��s�e−�1sds�
0

�

e�G/�tse−�2sds = 0. �A9�
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