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Nonlinear subdiffusive fractional equations and the aggregation phenomenon
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In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce
the random walk model in which statistical characteristics of a random walker such as escape rate and jump
distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master
equations and consider their diffusion approximations. We show that these equations describe the transition
from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This
transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We
illustrate the general results through the use of the examples from cell and population biology. We find that a
nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.
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I. INTRODUCTION

Anomalous subdiffusion is a widespread phenomenon in
physics and biology [1–3]. It is observed in the transport of
proteins and lipids on cell membranes [4], RNA molecules
in the cells [5], signaling molecules in spiny dendrites [6],
and elsewhere. Apart from fractional Brownian motion, the
linearfractional equations are the standard models for the
description of anomalous subdiffusive transport [2]. In these
models the diffusing particles do not interact. The question
then arises as to how to extend these equations for the nonlinear
case, involving particle interactions. These nonlinear effects
are typical and very important in cellular and population
biology. It is well known that many biophysical processes
in microorganisms depend on the their population density.
A typical example is the quorum sensing phenomenon, in
which microorganisms coordinate their behavior according
to their local population density [7]. Other examples are a
cellular adhesion, which involves the interaction between
neighboring cells [8–11], and the volume filling effect, which
describes the dependence of cell motility on the availability of
space in a crowded environment [12,13]. The understanding
of macroscopic phenomena like cell and microorganism ag-
gregation requires an understanding of how individual species
interact through attractive or repulsive forces (see, for example,
Ref. [14] and references therein). The attraction between
individuals may result from various social interactions such
as mating, settlement, defense against predators, etc. While
the repulsion may occur due to low resources in highly
populated regions [14,15]. Note that microorganisms interact
both directly and indirectly via signaling molecules.

The main purpose of this paper is to incorporate these
nonlinear effects into subdiffusive equations. Our aim is to
take into account the interaction between particles on the
mesoscopic level, at which the random walker’s characteristics
depend on the mean field density of particles. Our intention is
to derive the subdiffusive nonlinear fractional equations for the
density of particles and apply these equations to the problem
of aggregation. In this paper we use two different approaches
that are based on the density-dependent dispersal kernels and
density-dependent jump rate. Note that several theoretical
studies have been devoted to nonlinear generalizations of linear
fractional equations. However, most research has been focused

on the problem how to incorporate the nonlinear reactions into
subdiffusive equations [16–26]. The aim of this paper is to
study the nonlinear subdiffusive transport processes involving
the anomalous trapping of particles and their interactions.

In this paper we deal with the random walk model involving
a residence time-dependent escape rate and the structural
density of particles. This has been used by many authors for the
analysis of the non-Markovian random walks [3,16,17,27–29].
It turns out that this linear model is the most suitable for
further nonlinear generalizations. We consider a “space-jump”
random walk in one space dimension. The particle waits for
a random time (residence time) Tx at point x in space before
making a jump to another point. The random residence time
Tx is determined by the probability density function ψ(x,τ ) =
Pr {τ < Tx < τ + dτ } . The key characteristic of this random
walk is the escape rate γ from the point x. It depends on the
residence time τ and the position x : γ = γ (x,τ ). This rate
can be rewritten in terms of the probability density function
ψ(x,τ ) and the survival probability �(x,τ ) = ∫ ∞

τ
ψ(x,u) du

as follows [30]:

γ (x,τ ) = ψ(x,τ )

�(x,τ )
. (1)

It is convenient to write the survival probability �(x,τ ) in
terms of γ (x,τ ) as follows:

�(x,τ ) = e− ∫ τ

0 γ (x,s) ds . (2)

Let ξ (x,τ,t) be the structural density of particles at point x

at time t whose residence time lies in the interval (τ,τ + dτ ).
Here we neglect the aging phenomenon [31] and assume that
at t = 0 all particles have zero residence time:

ξ (x,τ,0) = ρ0(x)δ(τ ), (3)

where ρ0(x) is the initial density. To consider the aging we
need to specify the general distribution for ξ (x,τ,0).

For the initial condition (3), the density of particles, ρ (x,t) ,

is obtained by integration of the structural density ξ (x,τ,t) with
respect to the residence time variable τ from 0 to t :

ρ (x,t) =
∫ t

0
ξ (x,τ,t) dτ. (4)

The number of particles with fixed residence time τ escaping
from the point x per unit of time is defined as a product
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γ (x,τ )ξ (x,τ,t). The total escape rate, i (x,t) , of particles from
the point x can be obtained by integration of this product with
respect to τ from 0 to t :

i(x,t) =
∫ t

0
γ (x,τ )ξ (x,τ,t) dτ. (5)

The rate i (x,t) is a very useful quantity, since it allows us to
write a very simple master equation for the density ρ (x,t) as
the balance of particles at the point x:

∂ρ

∂t
=

∫
R

i (x − z,t) w (z|x − z) dz − i (x,t) , (6)

where w (z|x) is the dispersal kernel for the jumps. We have
assumed here that the jumps of particles are independent
from the residence time. One of the main results in the
non-Markovian random walk theory is that the mean escape
rate i (x,t) can be written as a convolution:

i (x,t) =
∫ t

0
K (x,t − τ ) ρ (x,τ ) dτ (7)

(see, for example, Ref. [3]). Here K(x,t) is the memory kernel
defined by its Laplace transform:

K̂ (x,s) = ψ̂ (x,s)

�̂ (x,s)
, (8)

where ψ̂ (x,s) = ∫ ∞
0 e−sτψ(x,τ ) dτ and �̂ (x,s) =∫ ∞

0 e−sτ�(x,τ ) dτ .
In the anomalous subdiffusive case, the survival probability

�μ (x,τ ) can be modeled by the Mittag-Leffler function [32]:

�μ (x,τ ) = Eμ

[
−

(
τ

τ0(x)

)μ(x)
]

, 0 < μ(x) < 1, (9)

where μ(x) is the space-dependent anomalous exponent. In
what follows we assume for simplicity that τ0 is constant.
The Laplace transform of the memory kernel Kμ (x,t) is
K̂μ (x,s) = s1−μ(x)τ0

−μ(x), and the integral anomalous escape
rate i (x,t) can be written as

i (x,t) = 1

τ0
μ(x)

D1−μ(x)
t ρ (x,t) , (10)

where D1−μ(x)
t is the Riemann-Liouville derivative with vary-

ing anomalous exponent [33]. Substitution of (10) into (6)
gives the integral fractional equation with space-dependent
anomalous exponent

∂ρ

∂t
=

∫
R

1

τ0
μ(x−z)

D1−μ(x−z)
t ρ (x − z,t) w (z|x − z) dz

− 1

τ0
μ(x)

D1−μ(x)
t ρ (x,t) . (11)

Note that if μ = const and τ0 = 1 one obtains the following
equation [34]:

∂μρ

∂tμ
=

∫
R

ρ (x − z,t) w (z|x − z) dz − ρ (x,t) , (12)

where the Caputo derivative ∂μρ/ ∂tμ is used instead of the
Riemann-Liouville derivative D1−μ

t ρ.
Using the Taylor series expansion in terms of z, and a

symmetric dispersal kernel w for which
∫
R zw(z|x) dz = 0,

we obtain the standard fractional subdiffusive equation

∂ρ

∂t
= ∂2

∂x2

[
Dμ(x)D1−μ(x)

t ρ(x,t)
]

(13)

with the fractional diffusion coefficient

Dμ (x) = σ 2(x)

2τ0
μ(x)

,

where σ 2(x) = ∫
R z2w(z|x) dz.

It has been found recently that subdiffusive fractional
equations with constant μ are not structurally stable with
respect to the spatial variations of fractal exponent μ(x)
[28,29]. This leads to the anomalous aggregation of particles at
the minimum of the function μ(x). In heterogeneous biological
systems, in which the exponent μ(x) is space dependent, the
question arises as to whether this anomalous aggregation of
a population can be prevented. Therefore it is an important
problem to find the way how to regularize subdiffusive
fractional equations. One way is to incorporate random killing,
which ensures regular behavior in the long-time limit [35].
The aim of this paper is to address this problem through a
nonlinear escape rate that takes into account repulsive forces
between particles. In the next section we derive the nonlinear
generalization of the fractional equations like (11) and (13).

II. NON-MARKOVIAN AND SUBDIFFUSIVE
NONLINEAR FRACTIONAL EQUATIONS

There are two major ways in which nonlinear density-
dependence effects can be implemented into non-Markovian
and subdiffusive transport equations. The simplest way is
to take into account the dependence of jump density w on
ρ. This dependence can take into account various nonlinear
effects such as adhesion, quorum sensing, volume filling, etc.
However, we begin with more complicated case of the random
walk model for which the escape rate is a function of the
residence time and the local density of particles.

A. Nonlinear escape rate

The main problem with this anomalous escape rate (10) is
the phenomenon of anomalous aggregation [27–29]. Nonuni-
form distribution of the anomalous exponent μ(x) over the
finite domain [0,L] leads to

ρ (x,t) → δ(x − xM ) as t → ∞. (14)

Here xM is the point in space where the anomalous exponent
μ (x) has a minimum. The problem is that that the escape rate
(10) is a linear functional of the density of particles ρ (x,t) and
does not take into account nonlinear effects of repulsive forces
which, in many situations, can prevent anomalous aggregation.
According to (14) all particles aggregate into a small region
around the point x = xM forming a high-density system. To
prevent such anomalous aggregation, one can assume that the
overcrowding leads to an increase of repulsive forces and a
corresponding correction of the anomalous escape rate γ (x,τ ).

We assume that the probability of escape due to the
repulsive forces is independent from anomalous trapping. We
define this probability for a small time interval �t as

α(ρ(x,t))�t + o(�t). (15)
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Here α(ρ) is the transition rate which is an increasing function
of the particles density ρ. Another interpretation can be given
in terms of the quorum sensing phenomenon [7]. The large
cell density can lead to the local overdepletion of nutrients
and oxygen, and as a result cells can change phenotype
from a proliferating state to a migrating one [22]. In another
words, when the concentration of cells is low, α(ρ) = 0, but
if the concentration of cells ρ(x,t) reaches a certain level
ρcr : α(ρ) �= 0 for ρ � ρcr . Of course, one can assume a
nonmonotonic dependence of the transition rate α(ρ) on ρ.
For example, at low cell densities α(ρ) could decrease with ρ,
while at high densities α(ρ) could be an increasing function:
α(ρ) = α0(1 − a1ρ + a2ρ

2) [12,14].
First, we formulate the Markovian model for the random

walk of particles with the density-dependent escape rate.
Let ξ (x,τ,t) be the density of particles at time t such that
ξ (x,τ,t)�x�τ gives the number of particles in the space inter-
val (x,x + �x) whose residence time lies in (τ,τ + �τ ) .The
balance equation for the structural density ξ (x,τ,t) for τ > 0
takes the form

ξ (x,τ + �τ,t + �t) = ξ (x,τ,t) (1 − γ (x,τ )�τ )

× (1 − α(ρ(x,t)) �t) + o (�t) ,

where 1 − γ (x,τ )�τ is the survival probability during �τ due
to the trapping, and 1 − α(ρ(x,t))�t is the survival probability
during time �t corresponding to the repulsion forces between
particles. Since the residence time τ increases linearly with
time t with the rate equals to one (�τ = �t), in the limit
�t → 0 we obtain the following equation:

∂ξ

∂t
+ ∂ξ

∂τ
= − [γ (x,τ ) + α(ρ(x,t))] ξ. (16)

Here the effective transition rate is the sum of two escape rates:

γ (x,τ ) + α(ρ(x,t)). (17)

The second term α(ρ(x,t)) can be treated as the correction of
the escape rate γ (x,τ ) defined by (1). The boundary condition
for ξ (x,τ,t) at zero residence time τ = 0 is

ξ (x,0,t) =
∫
R

i(x − z,t)w (z|ρ(x − z,t)) dz, (18)

where the effective escape rate i (x,t) from the point x at time
t is defined as

i (x,t) =
∫ t

0
[γ (x,τ ) + α(ρ(x,t))]ξ (x,τ,t) dτ. (19)

Equation (18) describes the balance of particles just arriving
at the point x from the different positions x − z. The jumps of
particles are determined by the conditional probability density
function (dispersal kernel) w (z|ρ(x − z,t)) . It depends on the
total density of particles ρ at the point x − z from which
the particles jump at point x (see all details regarding w

in Sec. II D). Obviously this dispersal kernel satisfies the
normalization condition∫

R
w (z|ρ(x,t)) dz = 1.

Because of the formula (4), i (x,t) can be rewritten as

i (x,t) =
∫ t

0
γ (x,τ )ξ (x,τ,t) dτ + α(ρ)ρ(x,t). (20)

It is convenient to introduce the density of particles j (x,t) just
jumping at the point x at time t :

j (x,t) = ξ (x,0,t). (21)

We solve (16) for ξ (x,τ,t) by the methods of characteristics.
For τ < t we find

ξ (x,τ,t) = ξ (x,0,t − τ )e− ∫ τ

0 γ (x,s) ds−∫ t

t−τ
α(ρ(x,s)) ds . (22)

This solution involves an exponential factor e− ∫ τ

0 γ (x,s) ds that
can be interpreted as the survival function �(x,τ ) defined by
(2). Therefore the formula (22) for ξ (x,τ,t) can be rewritten
in terms of j (x,t) = ξ (x,0,t) and �(x,τ ) as follows:

ξ (x,τ,t) = j (x,t − τ )�(x,τ )e− ∫ t

t−τ
α(ρ(x,s)) ds (23)

for τ < t . Taking into account the initial condition (3):
ξ (x,τ,0) = ρ0(x)δ(τ ) and the formula ψ(x,τ ) =
γ (x,τ )�(x,τ ) [see (1)] and substituting (23) into (20),
we obtain

i(x,t) =
∫ t

0
[ψ(x,τ )j (x,t − τ )e− ∫ t

t−τ
α(ρ(x,s)) dsdτ

+ ρ0(x)ψ(x,t)e− ∫ t

0 α(ρ(x,s)) ds + α(ρ)ρ. (24)

Substitution of (23) and (3) into (4) gives

ρ(x,t) =
∫ t

0
[�(x,τ )j (x,t − τ )e− ∫ t

t−τ
α(ρ(x,s)) ds dτ

+�(x,t)ρ0(x)e− ∫ t

0 α(ρ(x,s)) ds . (25)

We should note that the integral with respect to the residence
time τ in (24) and (25) is performed over the interval 0 �
τ < t, while the integration in (4) and (20) involves also the
upper limit τ = t, where we have a singularity due to the initial
condition (3).

By using the Laplace transforms one can eliminate j (x,t)
from (24) and (25) and express the the integral escape rate
i (x,t) in terms of the density ρ(x,t) as

i (x,t) =
∫ t

0
K (x,t − τ ) e− ∫ t

τ
α(ρ(x,s)) dsρ (x,τ ) dτ

+α(ρ(x,t))ρ(x,t), (26)

where the memory kernel K (x,t) is defined by its Laplace
transform (8). The details of this derivation can be found in
Ref. [3] (pp. 80–82; see also Ref. [20]). Note that the first
term in (26) involves the exponential factor, e− ∫ t

τ
α(ρ(x,s)) ds,

which can be interpreted as a nonlinear tempering. The main
feature of this modified escape rate i (x,t) is that although
the local rates γ (x,τ ) and α(ρ(x,t)) are additive [see (17)],
the corresponding terms in the integral escape rate (26) are
not additive. This is clearly non-Markovian effect. One of the
main aims of this paper is to find out what the implications of
this effect on the long-time behavior of the density ρ(x,t) are
(see Sec. III).

Note that in the linear homogeneous case, when α(ρ) = 0,

ψ is independent of x, and w is independent of ρ, we obtain
from

j (x,t) =
∫
R

i(x − z,t)w (z|ρ(x − z,t)) dz, (27)
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(24) and (25), the classical continuous time random walk
(CTRW) equation [1–3]:

ρ(x,t) =
∫
R

∫ t

0
ρ(x − z,t − τ )ψ(τ )w(z) dτ dz + ρ0(x)�(t).

B. Master equation for the mean field density of particles

The master equation for the density ρ (x,t) takes the simple
form of the balance of jumping particles:

∂ρ

∂t
=

∫
R

i (x − z,t) w (z|ρ(x − z,t)) dz − i (x,t) , (28)

where the dispersal kernel w depends on the mean density
ρ(x,t). Substitution of the integral escape rate (26) into
Eq. (28) gives the closed equation for ρ:

∂ρ

∂t
=

∫
R

∫ t

0
K (x − z,t − τ ) e− ∫ t

τ
α(ρ(x−z,s)) ds

× ρ (x − z,τ ) w (z|ρ(x − z,t)) dτ dz

−
∫ t

0
K (x,t − τ ) e− ∫ t

τ
α(ρ(x,s)) dsρ (x,τ ) dτ

+
∫
R

α(ρ(x − z,t))ρ(x − z,t)w (z|ρ(x − z,t)) dz

−α(ρ(x,t))ρ(x,t). (29)

One can find various nonlinear diffusion approximations
of (29) assuming the particular expressions for the density-
dependent dispersal kernels w (z|ρ (x,t)) and density-
dependent jump rate α(ρ (x,t)) [14].

When the escape rate γ does not depend on the residence
time variable τ , the survival function �(x,τ ) (2) has an
exponential form: �(x,τ ) = e−γ (x)τ . In this Markovian case
the Laplace transform of the memory kernel, K̂ (x,s) , does not
depend on s: K̂ (x,s) = γ (x). The integral escape rate i(x,t)
takes the standard Markovian form:

i(x,t) = [γ (x) + α(ρ(x,t))] ρ (x,t) . (30)

Substitution of this formula into (28) gives the nonlinear
Kolmogorov-Feller equation for ρ (x,t) [3]:

∂ρ

∂t
=

∫
R

[γ (x − z) + α(ρ(x − z,t))]ρ (x − z,τ )

×w (z|ρ(x − z,t)) dz − γ (x)ρ − α(ρ)ρ.

Several approximations of this equation and its applications in
population biology have been discussed in Ref. [14].

C. Diffusion approximation and chemotaxis

In this subsection we derive from (29) a fractional subdif-
fusive equation for ρ when α(ρ) = 0. The main motivation is
to study the chemotaxis which is a directed migration of cells
toward a more favorable environment [13,36]. The aim is to
illustrate as to how a fractional chemotaxis equation for cell
movement can be derived. We consider the random walk in
which particle (cell) performing instantaneous jumps in space
such that the jump density w involves only two outcomes:

w (z|x,t) = r(x,t)δ(z − a) + l(x,t)δ(z + a), (31)

where a is the jump size, r(x,t) is the jump probability from
the point x to x + a, l(x,t) is the jump probability from the
point x to x − a, and

r(x,t) + l(x,t) = 1. (32)

For the jump kernel (31) the master equation (28) takes the
form

∂ρ

∂t
= r(x − a,t)i(x − a,t)

+ l(x + a,t)i(x + a,t) − i(x,t). (33)

In the limit a → 0, we obtain

∂ρ

∂t
= −a

∂

∂x
{[r(x,t) − l(x,t)]i(x,t)}

+ a2

2

∂2i(x,t)

∂x2
+ o(a2). (34)

One can introduce the density of chemotactic substance U (x,t)
that induces the movement of the particles (cells) up or down
the gradient [13]. The presence of nonzero gradient ∂U/∂x

gives rise to the bias of the random walk when r(x,t) �= l(x,t)
[36,37]. We define the difference r(x,t) − l(x,t) as [37,38]

r(x,t) − l(x,t) = −βa
∂U (x,t)

∂x
+ o(a), (35)

where β is the measure of the strength of chemotactic
movement. When β is negative, the advection (taxis) is in
the direction of increase in the chemotactic substance U (x,t).
Equation (34) can be rewritten in terms of U (x,t) as follows:

∂ρ

∂t
= a2 ∂

∂x

[
β

∂U

∂x
i(x,t)

]
+ a2

2

∂2i(x,t)

∂x2
+ o(a2). (36)

Various expressions for the integral escape rate i(x,t) generate
the set of the equations for ρ in the diffusion approximations.
For example, the Markovian total escape rate

i(x,t) = γρ(x,t)

with escape rate γ → ∞ and jump size a → 0 gives the
standard advection-diffusion equation or classical Fokker-
Planck equation

∂ρ

∂t
= 2D

∂

∂x

[
β

∂U

∂x
ρ

]
+ D

∂2ρ

∂x2

with finite diffusion coefficient D = a2γ /2. Note that if we
interpret U (x,t) as the external potential, then β−1 = 2kT

[39]. The anomalous escape rate (10)

i (x,t) = 1

τ0
μ(x)

D1−μ(x)
t ρ (x,t)

generates the subdiffusive advection-diffusion equation or the
fractional Fokker-Planck equation [38,39]:

∂ρ

∂t
= 2

∂

∂x

[
Dμ(x)β

∂U

∂x
D1−μ(x)

t ρ

]

+ ∂2

∂x2

[
Dμ(x)D1−μ(x)

t ρ
]
. (37)
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Here Dμ(x) is the fractional diffusion coefficient defined as

Dμ(x) = a2

2τ0
μ(x)

, (38)

which is finite in the limit a → 0 and τ0 → 0.

D. Nonlinear jump distributions

In this subsection we discuss various nonlinear jump
distributions leading to nonlinear fractional equations when
α(ρ) = 0. As we mentioned previously, this is the simplest
way to incorporate nonlinearity into subdiffusive fractional
equations [28]. As long as the escape rate i (x,t) is determined,
we can define “where to jump” through the dispersal kernel w.
Let us assume that the dispersal kernel w depends on the
density of particles: w = w(z|ρ(x,t)). In what follows we
restrict ourselves to the subdiffusive case for which the rate
i(x,t) is determined by (10). In this case, the starting master
equation is

∂ρ

∂t
=

∫
R

D1−μ(x−z)
t ρ (x − z,t)

τ0
μ(x−z)

w (z|ρ(x − z,t)) dz

− D1−μ(x)
t ρ (x,t)

τ0
μ(x)

. (39)

First, we consider the case for which the jump dependence
on ρ is local. For example, one can use a Gaussian dispersal
kernel with rapidly decaying tails as

w (z|ρ) = 1√
2πσ 2(ρ)

exp

[
− z2

2σ 2(ρ)

]
.

An increasing dispersion σ 2(ρ) describes the effect of the local
repulsive forces due to overcrowding, while a decaying func-
tion σ 2(ρ) corresponds to attractive forces. Using the Taylor
series expansion in terms of z in the master equation (39),
we obtain the subdiffusive equation

∂ρ

∂t
= ∂2

∂x2

[
Kμ (ρ)D1−μ(x)

t ρ (x,t)
]

(40)

with the nonlinear fractional diffusion coefficient

Kμ (ρ) = σ 2(ρ)

2τ0
μ(x)

One can also introduce the nonlinear drift term generated by
Bernoulli jump distribution [14]

w (z|ρ) = 1
2 [1 + au (ρ)] δ (z − a)

+ 1
2 [1 − au (ρ)] δ (z + a) ,

where the positive function u (ρ) takes into account the fact
that the jump on the right is more likely than a jump to the left;
a is the jump size. It is assumed that 1 − au (ρ) is not negative;
that is, u (ρ) � a−1. The fractional master equation (39)
takes the form

∂ρ

∂t
= 1 + au (ρ (x − a,t))

2τ0
μ(x−a)

D1−μ(x−a)
t ρ (x − a,t)

+ 1 − au (ρ (x + a,t))

2τ0
μ(x+a)

D1−μ(x+a)
t ρ (x + a,t)

− 1

τ0
μ(x)

D1−μ(x)
t ρ (x,t) . (41)

Using the Taylor series expansion in (41) as a → 0, we obtain
the nonlinear fractional Fokker-Planck equation

∂ρ

∂t
= − ∂

∂x

[
2Dμ(x)u (ρ (x,t))D1−μ(x)

t ρ
]

+ ∂2

∂x2

[
Dμ(x)D1−μ(x)

t ρ
]

(42)

with the nonlinear advection term involving u (ρ (x,t)) and
fractional diffusion coefficient Dμ(x) defined by (38).

Now let us consider the random jump model when the jump
kernel w (z|ρ) depends on the mean density at a neighboring
points (nonlocal nonlinearity). This model deals with so-called
volume filling effect and cell-to-cell adhesion [9,12]. Instead
of considering the jump rates as in Refs. [9,12] we model
volume filling and adhesion effects via the jump density

w (z|ρ) = r(ρ)δ (z − a) + l(ρ)δ (z + a) ,

where r(ρ(x,t)) is the probability of jumping right from x to
x + a at time t and l(ρ(x,t)) is the probability of jumping left
from x to x − a at time t. We define these probabilities by
using two decreasing functions fv(ρ) � 0 and fa(ρ) � 0 as
follows:

r(ρ(x,t)) = fv(ρ(x + a,t))fa(ρ(x − a,t))

F (ρ)
,

(43)

l(ρ(x,t)) = fv(ρ(x − a,t))fa(ρ(x + a,t))

F (ρ)
,

where the function

F (ρ) = fv(ρ(x − a,t))fa(ρ(x + a,t))

+ fv(ρ(x + a,t))fa(ρ(x − a,t))

makes sure that

r(ρ(x,t)) + l(ρ(x,t)) = 1.

It follows from (43) that the probabilities r(ρ) and l(ρ)
of jumping into a neighboring points are dependent on the
densities of particles at these points. The decreasing function
fv(ρ(x + a,t)) is used to model volume filling: the jump
probability r(ρ(x,t)) from the point x to the right x + a is
reduced by the presence of particles (cells) at the point x + a.
The decreasing function fa(ρ(x − a,t)) describes the adhesion
effect, which says that the jump probability r(ρ(x,t)) from the
point x to the right x + a is reduced by the presence of particles
(cells) at the point x − a.

In the limit a → 0, one can obtain the nonlinear fractional
diffusion equation. To illustrate our theory let us consider
the particular case involving only volume filling effects
(no adhesion):

fv(ρ) = 1 − ρ, fa(ρ) = 1. (44)

In this case, we require the initial density

ρ0(x) < 1.

Substitution of (44) into (43) gives the following probabilities:

r(ρ(x,t)) = 1 − ρ(x + a,t)

2 − ρ(x + a,t) − ρ(x − a,t)
,

(45)

l(ρ(x,t)) = 1 − ρ(x − a,t)

2 − ρ(x + a,t) − ρ(x − a,t)
.
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The master equation (28) for the mean density ρ can be written
as

∂ρ

∂t
= r(ρ(x − a,t))i(x − a,t)

+ l(ρ(x + a,t))i(x + a,t) − i(x,t). (46)

To consider the diffusion approximation when a → 0 it is
convenient to define the flux of particles Jx,x+a from x to
x + a as

Jx,x+a = r(ρ(x,t))i(x,t)a − l(ρ(x + a,t))i(x + a,t)a

and the flux of particles Jx−a,x from x − a to x as

Jx−a,x = r(ρ(x − a,t))i(x − a,t)a − l(ρ(x,t))i(x,t)a.

The master equation (46) can be rewritten in the form

∂ρ

∂t
= −Jx,x+a + Jx−a,x

a
.

In the limit a → 0 we obtain

∂ρ

∂t
= −∂J (x,t)

∂x
, (47)

where

J (x,t) = −a2

2

∂i

∂x
− a2i

1 − ρ

∂ρ

∂x
+ o(a2). (48)

In the Markovian case, when the escape rate γ (x) does not
depend on the residence time and

i(x,t) = γ (x)ρ(x,t),

we obtain the nonlinear diffusion equation for ρ:

∂ρ

∂t
= ∂

∂x

[
D (ρ)

∂ρ

∂x

]
(49)

with the nonlinear diffusion coefficient

D (ρ) = a2λ(x)

2

1 + ρ

1 − ρ
.

In the anomalous subdiffusive case, when the total escape rate
from the point x is given by

i (x,t) = 1

τ0
μ(x)

D1−μ(x)
t ρ (x,t) ,

the flux of particles (48) involves two terms:

J (x,t) = − ∂

∂x

[
Dμ(x)D1−μ(x)

t ρ (x,t)
]

− 2Dμ(x)D1−μ(x)
t ρ (x,t)

1 − ρ

∂ρ

∂x
, (50)

where Dμ(x) is the fractional diffusion coefficient defined by
(38). Substitution of (50) into (47) gives a nonlinear fractional
equation

∂ρ

∂t
= ∂2

∂x2

[
Dμ(x)D1−μ(x)

t ρ
]

+ ∂

∂x

[
2Dμ(x)D1−μ(x)

t ρ (x,t)

1 − ρ

∂ρ

∂x

]
. (51)

The first term on the RHS of (51) is the standard term for
the subdiffusive fractional equation, while the second one is

the nonlinear term describing the volume filling effect in the
subdiffusive case.

III. ANOMALOUS SUBDIFFUSIVE CASE
WITH NONLINEAR TEMPERING

The aim of this section is to derive the master equation that
describes the transition from subdiffusive transport to asymp-
totic normal advection-diffusion transport. We consider the
subdiffusive case for which the waiting time PDF ψ(x,τ ) has
a power law tail: ψ(x,τ ) ∼ (τ0/τ )1+μ(x) with 0 < μ(x) < 1
as τ → ∞. One can use the survival probability �(x,τ )
defined by (9). The advantage of the Mittag-Leffler function (9)
is that one can obtain the fractional subdiffusive equation
without passing to the long-time limit [34]. The Laplace
transforms of ψ(x,τ ) = −∂�(x,τ )/∂τ and �(x,τ ) are

ψ̂ (x,s) = 1

1 + (τ0s)μ(x) , (52)

�̂ (x,s) = τ
μ(x)
0 sμ(x)−1

1 + (τ0s)μ(x) , (53)

and, therefore, the Laplace transform of the memory kernel
K(x,t) is

K̂ (x,s) = ψ̂ (x,s)

�̂ (x,s)
= s1−μ(x)

τ
μ(x)
0

. (54)

It follows from (26) that instead of (10) we have

i (x,t) = e−�(x,t)

τ0
μ(x)

D1−μ(x)
t [e�(x,t)ρ (x,t)] + α(ρ)ρ(x,t), (55)

where

� (x,t) =
∫ t

0
α (ρ (x,s)) ds. (56)

This function plays a very important role in what follows. It can
be referred as a nonlinear tempering. From (28) and (55) we
obtain the subdiffusive master equation for the density ρ (x,t)
with the nonlinear tempering � (x,t):

∂ρ

∂t
=

∫
R

e−�(x−z,t)

τ0
μ(x−z)

D1−μ(x−z)
t [e�(x−z,t)ρ (x − z,t)]

×w (z|ρ(x − z,t)) dz

− e−�(x,t)

τ0
μ(x)

D1−μ(x)
t [e�(x,t)ρ (x,t)]

+
∫
R

α(ρ(x − z,t))ρ(x − z,t)w (z|ρ(x − z,t)) dz

−α(ρ(x,t))ρ(x,t). (57)

Using (57) one can obtain various fractional subdiffusive
nonlinear equations. In particular, for the jump kernel (31)
with (35), in the limit a → 0 we obtain from (57) a nonlinear
fractional equation

∂ρ

∂t
= a2 ∂

∂x

(
β

∂U

∂x

{
e−�

τ0
μ(x)

D1−μ(x)
t [e�ρ] + α(ρ)ρ

})

+ a2

2

∂2

∂x2

{
e−�

τ0
μ(x)

D1−μ(x)
t [e�ρ] + α(ρ)ρ

}
+ o(a2),

(58)

where � is defined by (56).
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A. Transition to asymptotic advection-diffusion transport
regime and aggregation phenomenon

In this subsection we discuss a transition from a subdiffusive
transport regime to an asymptotically normal advection-
diffusion transport regime. This transition is governed by the
nonlinear fractional equation (58). It involves the exponential
factor e−�(x,t), with � (x,t) = ∫ t

0 α (ρ (x,s)) ds, that can be
considered as a nonlinear tempering. It generalizes the linear
tempering, where the power law waiting time distribution
is truncated by an exponential factor exp(−αt) [40]. We
expect that in the limit � (x,t) → ∞ we recover the station-
ary advection-diffusion equation or classical Fokker-Planck
equation, while in the intermediate asymptotic regime, when

� (x,t) � 1, (59)

we have a transient subdiffusive transport. If we take the limit
� (x,t) → 0 in (58) for a small escape rate α(ρ), nonuniform
distribution of the anomalous exponent μ(x) in (37) leads to
the aggregation of particles at the point of minimum of μ(x)
[20,29]. This phenomenon has been observed in experiments
on phagotrophic protists when “cells become immobile in
attractive patches, which will then eventually trap all cells”
[41]. In this case the anomalous exponent μ(x) dominates
and the gradient of the chemotaxis substance (potential field)
U (x) is irrelevant to the partial distribution of the density of
particles ρ. However, in general, this aggregation of particles
around one point is just a transient phenomenon in the time
interval

τ0 � t � 1

α
, (60)

where α = 1
t

∫ t

0 α (ρ (x,s)) ds. If we consider the long-time
limit t → ∞ such that � (x,t) → ∞, then we obtain the
stationary advection-diffusion equations (see the next two
subsections on aggregation of particles). The solution of these
equations represents ultimate cell aggregation determined by
the chemotaxis substance (potential field) U (x) and the spatial
distribution of anomalous exponent μ(x).

1. Aggregation of particles in the linear case

First, we assume that the local escape rate α is independent
of time, such that � (x,t) = α(x)t. The total escape rate i (x,t)
defined by (55) takes the form

i (x,t) = e−α(x)t

τ0
μ(x)

D1−μ(x)
t [eα(x)t ρ (x,t)]

+α(x)ρ(x,t). (61)

Its Laplace transform ı̂ (x,s) = ∫ ∞
0 e−st i(x,τ ) dτ is

ı̂ (x,s) =
{

[s + α(x)]1−μ(x)

τ
μ(x)
0

+ α(x)

}
ρ̂(x,s). (62)

In the limit s → 0 (t → ∞) one obtains the stationary escape
rate ist (x) (if it exists) in terms of the stationary density

ρst (x) = lim
s→0

sρ̂ (x,s) .

It follows from (62) that the stationary rate ist (x) can be written
in the Markovian form

ist (x) = γμ(x)ρst (x) ,

where the effective rate of escape γμ(x) is

γμ(x) = α(x)

[τ0α(x)]μ(x) + α(x).

The essential feature of this rate parameter γμ(x) is that
it depends on the fractal exponent μ(x). This escape rate,
together with (36), leads to the stationary advection-diffusion
equation

∂

∂x

[
2β

∂U

∂x
D (x) ρst (x)

]
+ ∂2

∂x2
[D (x) ρst (x)] = 0, (63)

where the diffusion coefficient D (x) = a2γμ(x)/2 depends on
μ(x) and α(x) :

D (x) = a2{[τ0α(x)]1−μ(x) + τ0α(x)}
2τ0

.

When the product τ0α is small, the term (τ0α)1−μ(x) is
dominant in the anomalous case μ(x) < 1, so Dμ (x) can be
approximated as

D (x) = a2 [τ0α(x)]1−μ(x)

2τ0
, τ0α(x) � 1.

Let us find the solution ρst (x) to (63) in the interval [0,L].
We use the reflective boundary conditions at x = 0 and x = L

which guarantees the conservation of the total population:∫ L

0
ρ(x,t) dx = 1.

We introduce the new function

p(x) = D (x) ρst (x).

It follows from (63) that this function obeys the equation

∂

∂x

[
2β

∂U (x)

∂x
p(x)

]
+ ∂2p(x)

∂x2
= 0 (64)

with the solution in the form of the Boltzmann distribution

p(x) = N−1 exp [−2βU (x)] .

Thus, the steady profile is

ρst (x) = N−1D−1 (x) exp [−2βU (x)] , (65)

where N is determined by the normalization condition N =∫ L

0 D−1 (x) exp [−2βU (x)] dx.

To illustrate how the nonhomogeneous anomalous exponent
μ(x) affects the aggregation pattern we consider the steady
profile (65) in the interval [0,1] for two cases: (1) U (x) = 0
and (2) U (x) = mx for which the anomalous exponent μ(x)
has the form

μ(x) = μ0 exp (−kx) ,

where 0 < μ0 < 1 and k � 0. Figure 1 shows that for the
uniform distribution of chemotaxis substance U (x) = 0, the
particles have the tendency to aggregate in the region of
the small values of μ(x) (dashed line). When the gradient
of chemotaxis substance ∂U (x)/∂x forces the cells (particles)
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FIG. 1. Stationary profiles ρst (x) for the linear distribution of the
potential U (x) = 5x (solid line) and U (x) = 0 (dashed line), β = 1,
μ0 = 0.9, α = 10−4,τ0 = 1, k = 2.19.

to move from the right to the left [U (x) = 5x and β = 1], the
steady profile is not monotonic (solid line).

2. Aggregation in the nonlinear case

Now we consider the nonlinear case when the escape rate
α depends on the density ρ. For living systems, this nonlinear
dependence results from a coupling between the local density
of cells and the intensity of the response of individual cell
to external signals. We assume that in the limit t → ∞ the
stationary distribution ρst (x) exists. Then as t → ∞, the
tempering factor e−�(x,t) can be approximated by e−α(ρst (x))t .

The stationary escape rate ist (x) corresponding to (26) can be
written in terms of the Laplace transform K̂ (x,s) as follows:

ist (x) = [K̂ (x,α(ρst )) + α(ρst )]ρst (x) . (66)

This steady rate ist (x) has the Markovian form in which the
rate parameter consists of two terms K̂ (x,α(ρst )) and α(ρst ).
The dependence of the first term on α(ρst ) is due to the non-
Markovian character of transport process. This effect does not
exist in the Markovian case for which K̂ is a function of x only.
The effective diffusion coefficient D (ρst (x)) is the function of
the mean density, and it depends on the structure of the Laplace
transform of the memory kernel K

D (ρst ) = a2

2
[K̂ (x,α(ρst )) + α(ρst )]. (67)

For the subdiffusive case when K̂ (x,s) is defined by (54),
the stationary escape rate ist (x) is

ist (x) =
(

{α[ρst (x)]}1−μ(x)

τ
μ(x)
0

+ α[ρst (x)]

)
ρst (x) . (68)

One can see that the first term on the RHS of (68) is dominant
for small ατ0 and μ(x) < 1. For the jump density (31), in the
limit a → 0 we obtain the stationary nonlinear Fokker-Planck
equation

∂

∂x

[
2β

∂U

∂x
D (ρst ) ρst (x)

]
+ ∂2

∂x2
[D (ρst ) ρst (x)] = 0,

(69)

where D (ρst (x)) is the nonlinear diffusion coefficient defined
as

D (ρst ) = a2 {α[ρst (x)]}1−μ(x)

2τ
μ(x)
0

, τ0α[ρst (x)] � 1.

If we assume a zero flux condition at the boundaries of the
interval [0,L], then

J = −2β
∂U

∂x
D (ρst ) ρst (x) − ∂

∂x
[D (ρst ) ρst (x)] = 0,

and the stationary profile ρst (x) can be found from the
nonlinear equation

ρst (x) = N−1D−1 (ρst (x)) exp [−2βU (x)] , (70)

where N is determined by the normalization condition
N = ∫ L

0 D−1 [ρst (x)] exp [−2βU (x)] dx. The time evolution
of the density profile ρ(x,t) for the nonlinear fractional
equation (58) can be described as follows. At lower values of
� = ∫ t

0 α[ρ(x,s)] ds, the early evolution is the development
of a single peak at the point of the minimum of μ(x). This
can be considered as an intermediate anomalous aggregation
of particles. However, incorporating the escape rate α (ρ) and
the nonlinear tempering factor e−� provide a regularization
of anomalous aggregation. For sufficiently large � the density
profile ρ (x,t) must converge to a stationary solution (70) as
t → ∞.

IV. CONCLUSIONS

The aim in this paper was to derive the macroscopic
nonlinear subdiffusive fractional equations for the evolution
of a mean density of random walkers by incorporating a
nonlinear escape rate and nonlinear jump distributions. The
main motivation was to take into account the interaction
between particles on the mesoscopic level at which the random
walker characteristics depend on the mean density of particles.
We illustrated the general results for nonlinear random walk
models by using the examples from cell and population
biology. We derived nonlinear fractional equations that take
into account chemotaxis, volume filling effect, and cell-to-cell
adhesion. We showed that the nonlinear escape rate leads to
the effective regularization of standard subdiffusive fractional
equations. Our modified fractional equations describe the
transition from an intermediate subdiffusive regime to an
asymptotically normal advection-diffusion transport regime.
We showed that this transition is governed by a nonlinear
tempering factor that generalize the standard linear tempering.
We discussed the aggregation phenomenon and showed the
impact of a nonuniform distribution of anomalous exponent
on aggregation patterns.
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