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Subdiffusive master equation with space-dependent anomalous exponent and structural instability
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We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic
behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the
subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not
structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-
Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever
the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in
the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely
dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random
distribution of anomalous exponent is an illustration of a “Black Swan,” the low probability event of the small
value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.
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I. INTRODUCTION

The last decade has seen increasingly detailed development
of the fractional equations describing the anomalous transport
in physics, biology, and chemistry [1–4]. Special attention
has been paid to slow subdiffusive transport for which mean-
squared displacement is sublinear 〈x2(t)〉∼ tμ, where μ is the
anomalous exponent μ < 1. Subdiffusion is experimentally
observed for proteins and lipids on cell membranes [5], RNA
molecules in the cells [6], transport in spiny dendrites [7],
etc. The major feature of this process is the absence of the
characteristic microscopic time scale. The theory of anomalous
subdiffusion leads to fractional partial differential equations
involving memory effects. If we introduce the probability
density function p(x,t) for finding the particle in the interval
(x,x + dx) at time t , then the subdiffusive transport of the
particles under the influence of external time-independent
force can be described by the fractional Fokker-Planck (FFP)
equation,

∂p

∂t
= D1−μ

t LFP p, (1)

with

LFP p = −∂(vμ(x)p)
∂x

+ ∂2(Dμ(x)p)
∂x2

; (2)

(see excellent reviews [1] and [2]). The Riemann-Liouville
derivative D1−μ

t is defined as

D1−μ
t p(x,t) = 1

�(μ)

∂

∂t

∫ t

0

p(x,u)du

(t − u)1−μ
, (3)

and the anomalous exponent μ < 1 is assumed to be constant.
The central result of this paper is that the subdiffusive

fractional equations with constant μ in a bounded domain
[0,L] are not structurally stable with respect to the nonhomo-
geneous variations of parameter μ. It turns out that the space
variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x,t) for large t. To show this high
sensitivity to nonhomogeneous perturbations, one can consider
the following exponent:

μ(x) = μ + δν(x), (4)

with constant μ and perturbation δν(x) (see Fig. 1). The
asymptotic long-time behavior of the density p(x,t) with (4)
is quite different from that of the solution to Eq. (1) with the
constant value of μ. It means that the standard subdiffusive
equation with constant μ is not a robust model for subdiffusive
transport in heterogeneous complex media.

Now let us explain our main result. The standard way to
deal with the fractional equation like (1) in the bounded domain
[0,L] is a method of separation of variables [1]. Let us consider
the case of the reflecting boundaries at x = 0 and x = L when
(1) has a stationary solution pst (x) satisfying

vμ(x)pst = ∂

∂x
(Dμ(x)pst ). (5)

We can write a partial solution of Eq. (1) in the form,

p(x,t) = pst (x)Q(x)T (t).

The time evolution T (t) is described by the fractional relax-
ation equation,

∂T

∂t
= −λD1−μ

t T , (6)

where λ is the separation constant. The function Q(x) satisfies

L∗
FP Q = −λQ. (7)

Here the operator L∗
FP is the adjoint to LFP

L∗
FP Q = vμ(x)

∂Q

∂x
+ Dμ(x)

∂2Q

∂x2
. (8)

Thus the solution of Eq. (1) can be written as

p(x,t) = pst (x)
∞∑

n=0

Eμ(−λnt
μ)Qn(x)p0n, (9)

where p0n = ∫ L

0 p0(x)Qn(x)dx and Qn(x) are the eigenfunc-
tions of (7) (Q0(x) = 1). The details can be found in a book [8]
on page 129 (see also [9] for a fractional case). The essential
difference between the standard Fokker-Planck equation and
the FFP equation is the rate of relaxation of p(x,t) → pst (x).
In the anomalous subdiffusive case the relaxation process is
very slow and it is described by a Mittag-Leffler function
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FIG. 1. Nonuniform distribution of anomalous exponent μ(x) on
the interval [0,L].

Eμ(−λnt
μ) with the power-law decay t−μ as t → ∞ [1–3]

(see also [10]). The exponential decay exp(−λnt) is recovered
for μ = 1.

In this paper we show that if we consider nonuniform
perturbations of the anomalous exponent as (4), this relaxation
picture is completely changed. The method of separation of
variables does not work for space-dependent μ(x). The asymp-
totic behavior of p(x,t) as t → ∞ is essentially different from
that given by Eq. (9). It turns out that in the limit t → ∞
the probability density p(x,t) concentrates around the point x,
where the perturbation δν(x) is located, while the stationary
distribution pst (x) is completely irrelevant (see Figs. 2 and 3).

II. FRACTIONAL MASTER EQUATION WITH
SPACE-DEPENDENT ANOMALOUS EXPONENT

The question is how to take into account the nonuniform
distribution of the anomalous exponent μ. We cannot simply
substitute the expression like (4) into (1). So we need
a fractional master equation with space-dependent μ(x).
Chechkin, Gorenflo, and Sokolov were the first to derive
the fractional diffusion equation with a varying fractional
exponent [11]. They studied a composite system with only
two separate regions with different anomalous exponents and
found interesting effects involving a nontrivial average drift.
A similar phenomenon has been analyzed in terms of two
equations with a different exponent by Korabel and Barkai
[12]. Anomalous diffusion in composite media with space-
dependent exponent μ has been also considered in Ref. [13].
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FIG. 2. Long-time limit of the solution to the system (41) with
μi = 0.5 for all i. Gibbs-Boltzmann distribution is represented by the
line.
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FIG. 3. Long-time limit of the system (41) when μi is subject to
a perturbation. The parameters are μi = 0.5 for all i except i = 42
for which μ42 = 0.3.

A. Hazard function and structured probability density function

Here we present an alternative derivation which is valid for
a general space- and time-dependent jump densities. Consider
a “space-jump” random walk model in one space dimension.
The particle movement can be described as follows. It waits
for a random time (residence time) Tx at each point x in space
before making a jump to another point. The index x indicates
that the waiting time Tx depends on a space coordinate x. It
is convenient to define the hazard function [14] as the escape
rate of a walker from the point x,

γ (x,τ ) = lim
h→0

Pr{τ < Tx < τ + h|Tx〉τ }
h

. (10)

The next step is the introduction of the structured probability
density function ξ (x,t,τ ) that the particle position X(t) at
time t is in the interval (x,x + dx) and its residence time Tx

at point x is in the interval (τ,τ + dτ ). The advantage of the
structured density ξ is that a random walk can be considered as
Markovian. This is a standard way to deal with non-Markovian
processes [14] (see also [15–17]). This density ξ (x,t,τ ) obeys
the balance equation,

∂ξ

∂t
+ ∂ξ

∂τ
= −γ (x,τ )ξ. (11)

Here we consider only the case when the residence time of
random walker at t = 0 is equal to zero, so the initial condition
is

ξ (x,0,τ ) = p0(x)δ(τ ), (12)

where p0(x) is the density for the initial position X(0). The
boundary condition at τ = 0 can be written as [14]

ξ (x,t,0) =
∫
R

∫ t

0
γ (x,τ )ξ (x − z,t,τ )w(z|x − z,t)dτdz,

(13)

where w(z|x,t) is the probability density for jumps z from the
point x at time t (jumps are independent from the residence
time).

Our purpose now is to derive the fractional master equation
for the probability density,

p(x,t) =
∫ t

0
ξ (x,t,τ )dτ. (14)
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It is convenient to introduce the integral escape rate,

i(x,t) =
∫ t

0
γ (τ,x)ξ (x,t,τ )dτ, (15)

and integral arrival rate,

j (x,t) = ξ (x,t,0), (16)

as the density of particles with zero residence time. The
boundary condition (13) can be rewritten as

j (x,t) =
∫
R

i(x − z,t)w(z|x − z,t)dz. (17)

Differentiation of Eq. (14) with respect to time and substitution
of ∂ξ/∂t from Eq. (11) together with Eq. (17) gives

∂p

∂t
=

∫
R

i(x − z,t)w(z|x − z,t)dz − i(x,t). (18)

To close this equation we need to express the escape rate
i(x,t) in terms of p(x,t). We solve (11) by the method of
characteristics,

ξ (x,t,τ ) = ξ (x,t − τ,0)e− ∫ τ

0 γ (x,s)ds, τ < t. (19)

Here we recognize the survival function [14],


(x,τ ) = Pr{Tx > τ } = e− ∫ τ

0 γ (x,s)ds, (20)

so the structural density ξ can be rewritten as

ξ (x,t,τ ) = j (x,t − τ )
(x,τ ), τ < t. (21)

The residence time probability density function (PDF) φ(x,τ )
is related to γ (x,τ ) as

φ(x,τ ) = −∂
/∂τ = γ (x,τ ) exp

(
−

∫ τ

0
γ (x,s)ds

)
. (22)

The balance equation for p(x,t) can be found by substitution
of Eq. (19) and the initial condition ξ (x,0,τ ) = p0(x)δ(τ ) into
(14)

p(x,t) =
∫ t

0
j (x,u)
(x,t − u)du + p0(x)
(x,t). (23)

To obtain the equation for i(x,t) we substitute (19) and the
initial condition into (15):

i(x,t) =
∫ t

0
j (x,u)φ(x,t − u)du + p0(x)φ(x,t). (24)

Using the Laplace transform in Eqs. (23) and (24) we eliminate
j (x,t) and obtain [11]

i(x,t) =
∫ t

0
K(x,t − τ )p(x,τ )dτ, (25)

where K(x,t) is the memory kernel defined by its Laplace
transform,

K̂(x,s) = φ̂(x,s)


̂(x,s)
. (26)

B. Anomalous subdiffusion in heterogeneous media

Let us consider the anomalous subdiffusive case with the
survival probability [18]:


(x,t) = Eμ(x)

[
−

(
t

τ (x)

)μ(x) ]
, 0 < μ(x) < 1, (27)

where Eμ[z] is the Mittag-Leffler function. The Laplace
transforms of 
(x,t) and φ(x,t) are


̂(x,s) = τ (x)(sτ (x))μ(x)−1

1 + (sτ (x))μ(x)
, φ̂(x,s) = 1

1 + (sτ (x))μ(x)
.

(28)

The Laplace transform of the memory kernel K(x,t) is

K̂(x,s) = s1−μ(x)

τ (x)μ(x)
, (29)

and the integral escape rate i(x,t) can be written as

i(x,t) = 1

τ (x)μ(x)
D1−μ(x)

t p(x,t). (30)

Substitution of this expression into Eq. (18) gives the fractional
master equation,

∂p

∂t
=

∫
R

D1−μ(x−z)
t p(x − z,t)

τ (x − z)μ(x−z)
w(z|x − z,t)dz

− 1

τ (x)μ(x)
D1−μ(x)

t p(x,t), (31)

where D1−μ(x)
t is the Riemann-Liouville fractional derivative

with varying order. This equation can be used to derive the
general Fokker-Planck equation [19]. If we assume that the
anomalous exponent μ and time parameter τ are independent
from coordinate x, this equation can be rewritten in terms of
the Caputo derivative,

τμ ∂μp

∂tμ
=

∫
R

p(x − z,t)w(z|x − z,t)dz − p(x,t). (32)

It should be noted that the fractional equation with the Caputo
derivative cannot be served as a model for subdiffusion in
heterogeneous media with varying in the space anomalous
exponent μ(x).

Master equation (31) can be a starting point for deriving
nonlinear fractional equations. If instead of p we consider the
mean density of particles ρ and assume that jump PDF w(z)
depends on ρ, then one can write

∂ρ

∂t
=

∫
R

D1−μ(x−z)
t ρ(x − z,t)

τ (x − z)μ(x−z)
w(z|ρ(x − z,t))dz

− 1

τ (x)μ(x)
D1−μ(x)

t ρ(x,t). (33)

Expansion of this equation in z can give a variety of fractional
nonlinear partial differential equations. As an example, let us
consider the case of the symmetrical kernel w(z|ρ) for which
the first moment

∫
R zw(z|ρ(x,t))dz = 0. Then (33) can be

approximated by a nonlinear fractional equation,

∂ρ

∂t
= ∂2

∂x2

(
Dμ(ρ)D1−μ(x)

t ρ
)
, (34)

031132-3



SERGEI FEDOTOV AND STEVEN FALCONER PHYSICAL REVIEW E 85, 031132 (2012)

with varying anomalous exponent μ(x) and nonlinear frac-
tional diffusion coefficient Dμ(ρ):

Dμ(ρ) = m2(ρ)

2τ (x)μ(x)
, m2(ρ) =

∫
R

z2w(z|ρ)dz. (35)

First, let us consider random walk on a lattice with the
space size a. We denote the probability of a particle moving
right and left from the point x as r(x) and l(x) correspondingly
(r(x) + l(x) = 1). Then the jump PDF can be written as

w(z|x) = r(x)δ(z − a) + l(x)δ(z + a). (36)

The fractional master Eq. (31) takes the form,

∂p

∂t
= r(x − a)

τ (x − a)μ(x−a)
D1−μ(x−a)

t p(x − a,t)

+ l(x + a)

τ (x + a)μ(x+a)
D1−μ(x+a)

t p(x + a,t)

− 1

τ (x)μ(x)
D1−μ(x)

t p(x,t). (37)

In the limit of small a and τ (x) [20] one can obtain from
Eq. (37) the FFP equation with varying the anomalous
exponent,

∂p

∂t
= −∂

(
vμ(x)D1−μ(x)

t p
)

∂x
+ ∂2

(
Dμ(x)D1−μ(x)

t p
)

∂x2
, (38)

with the finite values of the fractional diffusion coefficient
Dμ(x) and fractional drift vμ(x) :

Dμ(x) = a2

2τ (x)μ(x)
, vμ(x) = 2(r(x) − l(x))Dμ(x)

a
. (39)

Note that in order to keep the fractional drift vμ(x) finite as
a → 0, we need to assume that r(x) − l(x) = O(a).

If we put the reflecting barriers at x = 0 and x = L and
consider constant exponent μ and diffusion Dμ, then the FFP
Eq. (38) admits the stationary solution in the form of the Gibbs-
Boltzmann distribution:

pst (x) = C exp[−U (x)], U (x) = − 1

Dμ

∫ x

vμ(z)dz, (40)

with C−1 = ∫ L

0 exp[−U (x)]dx.
If μ is constant, the fractional time derivative does not affect

the Gibbs-Boltzmann distribution [1,23]. But this result is
structurally unstable with respect to any nonuniform variations
of μ. Let us show now that the Gibbs-Boltzmann distribution
(40) is absolutely irrelevant for the long-time behavior of the
solution to the FFP equation (38) with nonuniform distribution
of μ(x) (4).

C. Discrete model

We divide the interval [0,L] into n discrete states. At each
state i, the probability of jumping in the neighborhood to the
left or right is given, respectively, by li and ri (li + ri = 1). The
fractional Eq. (37) for pi(t) = Pr{X(t) = i} can be rewritten
as

p′
i(t) = ri−1D1−μi−1

t pi−1(t)

τi−1
μi−1

+ li+1D1−μi+1
t pi+1(t)

τi+1
μi+1

−D1−μi−1
t pi(t)

τi
μi

, i = 1, . . . ,n, (41)

subject to the conditions l1 = r−1 = 0, r1 = 1 and ln = 1,

rn = ln+1 = 0. Note that the FFP Eq. (38) is just a continuous
approximation of Eq. (41). Taking the Laplace transform of
(41) and using

∑
i p̂i(s) = 1

s
, we obtain

sp̂i(s)

(
1 + ri−1

(sτi−1)μi−1
+ li+1

(sτi+1)μi+1
+ 1

(sτi)μi

)

= ri−1

(sτi−1)μi−1

(
1 −

∑
j 	=i−1,i

sp̂j (s)

)

+ li+1

(sτi+1)μi+1

(
1 −

∑
j 	=i,i+1

sp̂j (s)

)
+ pi(0). (42)

If one μM is smaller than the others (μM < μi ∀i), one can
find that sp̂i(s) → 0 and sp̂M (s) → 1 as s → 0. It means that
in the limit t → ∞, we obtain

pi(t) → 0, pM (t) → 1. (43)

This result in a continuous case can be rewritten as p(x,t) →
δ(x − xmin) as → ∞, where xmin is the point on the interval
[0,L] at which μ(x) takes its minimum value. A similar result
was obtained for a symmetrical random walk in Ref. [17]
in the context of chemotaxis (anomalous aggregation). Note
that Shushin [21] considered a two-state anomalous system
with a different anomalous exponent μ and found that in the
long-time limit the probability is located in the slower state
(see also [12,22]).

III. MONTE CARLO SIMULATIONS

To validate our results, we run Monte Carlo simulations
with the following procedure. Random numbers with uniform
distribution, u and v, are generated and then transformed into
Mittag-Leffler distributed random numbers using the follow-
ing inversion formula tμ = −τ log(u)( sin(μπ)

tan(μπv) − cos(μπ ))
1
μ

[24] (see for details [25]). We take L = 1 and divide the
interval [0,1] into 100 subintervals. We use ri = 1/2 + 5a(1 −
2ai)/2,1 � i � 100 and a = 1/100. This corresponds to

r(x) = 1
2 + 5a

(
1
2 − x

)
, (44)

so the drift vμ(x) = 10(1 − 2x)Dμ and the potential,

U (x) = 5
2 (1 − 2x)2. (45)

All the random walkers start in the same state i = 40, their
number N = 104, τi = 10−4 for all i, and the long-time limit
is set at T = 105.

First step is to compute the exact stationary PDF given by
Eq. (40) and see how well our Monte Carlo simulations work.
Figure 2 shows that the Monte Carlo simulations agree with
the Gibbs-Boltzmann distribution.

The next step is to show that the Gibbs-Boltzmann
distribution (40) is absolutely irrelevant as far as the long-
time behavior of the nonuniform system is concerned. The
anomalous exponent μi is assumed to be 0.5 for all states
except one, i = 42, for which μ42 = 0.3. One can see from
Fig. 3 that in the long-time limit the probability is concentrated
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FIG. 4. The PDF f (μ) of random anomalous exponent μ.

at state i = 42. One can conclude that there is a complete
breakdown in the predictions based on the FFP equation
with the uniform anomalous exponent. If the system were
structurally stable we would expect to see something more
like Fig. 2 again. However, the outcome is completely dom-
inated by the perturbation μ42 = 0.3. This result has a huge
implication for modeling the anomalous subdiffusive transport
of proteins, porous media, etc. In reality the environment in
which anomalous transport takes place is never homogeneous.

Several attempts have been made to take into account the
random distribution of the anomalous exponent (see, e.g.,
[26,27]). One can introduce PDF f (μ) for a random μ and
write down the distributed-order fractional FPE as∫ 1

0
τμ−1 ∂μp

∂tμ
f (μ)dμ = LFP p. (46)

Let us show that if we generate the random field μ(x) along
the space interval [0,1], the asymptotic behavior of p(x,t) will
be quite different from that of the average fractional Eq. (46).

Figure 4 shows the PDF f (μ) which will be used to
generate the discrete uncorrelated random field μi . The
probability is concentrated around the point 0.6 such that
Pr{0.5 < μ < 0.7} = 0.98. This distribution is chosen so that
extreme values are highly unlikely to occur, with a purpose
to show that the extreme low values dominate the long-time
behavior. Figure 5 shows one sample of random field μ(x) on
the interval [0,1] which is subdivided into 100 subintervals
(1 � i � 100). Figure 5 shows clearly that the values of μi

fluctuate around the mean. The value at μ82 = 0.012 45 has

20 40 60 80 i
0

0.5

μ
i

FIG. 5. One sample of the discrete random field μi along i for
1 � i � 100.

20 40 60 80 i
0

50

T=10 5

N=10 4

p
i
(T)

FIG. 6. Long-time limit of the system (41) when μi is the random
field represented in Fig. 5.

a very small probability, since Pr{μ < 0.02} = 2.5 × 10−4.
It is a very unlikely event, yet one can see from Fig. 6 the
state i = 82 completely dominates the long-time outcome of
Eq. (41). This phenomenon can be interpreted as a “Black
Swan.” We use the term “Black Swan,” to capture the idea
proposed by Taleb [28] of the disproportionate role of rare
events with extreme impact. Here the “Black Swan” is an
outlier (small value of anomalous exponent) that completely
dominates the long-time behavior of subdiffusive systems.
This event has a very low probability of happening. However,
when it does occur it has a high impact on the future evolution
of the process.

The distribution of p(x,t) is highly intermediate for large
t , so the average behavior described by Eq. (46) can be
very misleading. It has been found [26] that the distribution
of the anomalous exponent in Eq. (46) leads to ultraslow
kinetics, but the stationary distribution is still given by the
Gibbs-Boltzmann distribution [23]. Our results show that
random space variation of the anomalous exponent leads to
completely different behavior in the long-time limit (see Fig.
6). It should be noted that anomalous diffusion is just an
intermediate asymptotic. When time tends to infinity we expect
a crossover from anomalous diffusion to normal diffusion, and
then we will recover the Gibbs-Boltzmann distribution. The
standard tool for studying a subdiffusion is a subordination
technique [29] with a constant anomalous exponent. It would
be interesting to apply a similar technique if possible to the
nonhomogeneous case. It would be also interesting to take
into account chemical reactions together with the nonuniform
anomalous exponent [30].

IV. CONCLUSIONS

We have demonstrated that when the anomalous exponent
μ depends on the space variable x, the Gibbs-Boltzmann
distribution is not a long-time limit of the fractional Fokker-
Planck equation. Even very small variations of the exponent
lead to a drastic change of p(x,t) in the limit t → ∞. We
have derived the fractional master equation with the space-
dependent anomalous exponent. We analyzed asymptotic
behavior of the corresponding lattice model in a finite domain
with n states with different exponents. We have found that
in this situation the probabilities pi(t) do not converge to
the stationary distribution. To illustrate our ideas, we ran
Monte Carlo simulations which show a complete breakdown
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in the predictions based on the FFP equation with the uniform
anomalous exponent. Furthermore, we have shown that the
idea of taking into account the randomness of the anomalous
exponent μ by averaging the fractional equation with respect to
the distribution f (μ) is not applicable to a nonhomogeneous
finite domain. Monte Carlo simulations show that for every
random realization of μ(x) the PDF p(x,t) is highly interme-
diate, so the average behavior can be misleading. Although
it is possible in theory to have a completely homogeneous

environment, in which μ is uniform, it is not useful in any real
application like chemotaxis [17] or morphogen gradient for-
mation [31] because any nonhomogeneous variation destroys
the predictions based on this model in the long-time limit.
We have demonstrated that subdiffusive equations with the
nonuniform random distribution of the anomalous exponent
illustrate the “Black Swan” phenomenon [28], when an outlier
(small value of anomalous exponent) completely dominates
the long-time behavior of subdiffusive systems.
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