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Scaling and renormalization for the Kolmogorov-Petrovskii-Piskunov equation
with turbulent convection

Sergei Fedotov*
Department of Mathematical Physics, Ural State University, Yekaterinburg 620 083, Russia

~Received 10 June 1996!

The problem of determining the upper bounds for the ensemble-averaged reaction front position and speed
in a fully developedthree-dimensionalturbulent flow has been examined, in which the reaction is of
Kolmogorov-Petrovskii-Piskunov type and turbulent velocity is a Gaussian random field exhibiting long-range
correlations and infrared divergence in the limit of large Reynolds number. An asymptotic method has been
developed that gives the general formalism for determining the upper bounds for reaction front in the long-
time, large-distance limit. Two anomalous scaling regimes and corresponding scaling functions have been
determined by the use of exact renormalization procedure.@S1063-651X~97!03503-4#

PACS number~s!: 47.27.2i, 05.40.1j
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I. INTRODUCTION

In recent years there has been a substantial theore
interest in the study of reaction front propagation in turbul
flows ~see, for example,@1–3#, and references therein!. The
main quantities of interest are the large scale turbulent fla
speed and its parametric dependence on the statistical
acteristics of turbulent flow. The importance of analytic pr
cedures for determining turbulent flame velocity has lo
been recognized because the direct numerical calculatio
this quantity is usually very expensive and time consumi
especially if we are interested in the enhanced flame spee
a high Reynolds number turbulent flow@4–7#.

An important starting point to deal with the problem
turbulent reaction front propagation is the Kolmogoro
Petrovskii-Piskunov~KPP! equation with random convectio
term. Recently a great deal of progress has been made in
theory using partial differential equation~PDE! techniques
for viscosity solutions for Hamilton-Jacobi equations@8–10#
and a rigorous renormalization procedure@11–13#, but here
the results are restricted to a rather simple case of two s
rated length scales for the velocity field or two-dimensio
shear flow with many spatiotemporal scales.

In this paper we attempt to remove these restrictions,
consideringthree-dimensionalrandom velocity field with ar-
bitrarily many spatial and temporal scales. The main purp
is to derive an equation determining an upper bound
ensemble-averaged reaction front position and speed
thereby to provide the framework for a detailed study of h
the random velocity field with long-range correlations
space and time may influence front propagation in the lo
time, large-distance limit. Our method of analysis introduc
a representation of the solution of the KPP equation w
random convection in terms of functional integrals with r
spect to Markov processes@11–15#. We employ a singular
perturbation method involving small values of the ratio
the Kolmogorov length scale to the integral length scale
turbulent flow. We also use the exact renormalization the
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for turbulent transport~while the main stages of this theor
will be given in what follows we refer to Avellaneda an
Majda for a complete and careful discussion and further
erences@16,17#!.

The main area of practical interest concerning react
front propagation in a random velocity field is a turbule
combustion in the so-called flamelet regime@4–7#. Although
the theory based on the KPP equation may not be dire
applicable to premixed flames~see, however,@18,19#!, it
does provide a reference point for interpreting the exp
mental results on the acceleration of reaction front@7,12#.

II. KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION
WITH RANDOM CONVECTION

Consider a nondimensional scalar fieldw(t,x) whose dy-
namical evolution is governed by the Kolmogoro
Petrovskii-Piskunov equation with random convection ter

]w

]t
1v~ t,x!•¹w5D¹2w1c~euxu,w!w, xPR3 ~1!

where the velocityv(t,x) is assumed to be an incompressib
homogeneous isotropic Gaussian random field with z
mean and the reaction ratec(euxu,w)w is of Kolmogorov-
Petrovskii-Piskunov type,

c~euxu,0!5maxwP[0,1]c~euxu,w!.0 , c~euxu,1!50 .
~2!

Here the space and time variables are rescaled so
space is measured in units of the Kolmogorov length sc
h5(n3/ «̄)1/4, and time is measured in units oftk5h/vk .
The Kolmogorov velocity scalevk5(n«̄)1/4 is used as unit
of random velocity field;«̄ is the average dissipation rate o
energy per unit mass. We assume that the funct
c(euxu,w) varies on the integral scale of turbulence and d
pends only on the distance from the pointx50; that is why
the reaction ratec involves a small parametere5Re23/4, the
ratio of the Kolmogorov length scaleh to the integral length
scalel 0, Re5u0l 0 /n is a Reynolds number. If the diffusion
coefficient D nondimensionalized by the viscosit
2750 © 1997 The American Physical Society
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55 2751SCALING AND RENORMALIZATION FOR THE . . .
n and the parameterc5c(euxu,0)5const are of order of
unity, then the ‘‘laminar’’ flame velocityvL5(2cD)1/2 is of
the order of the Kolmogorov velocityvk and the ‘‘laminar’’
flame thickness l L5(D/c)1/2 is of the order of the
Kolmogorov dissipation lengthh.

The initial condition is assumed to be spherically sy
metrical, namely,

w~0,x!5w0~euxu!5H 1 if euxu,r

0 otherwise.
~3!

These data mean that at some initial time, a spher
‘‘hot’’ pocket with w51 is introduced into an infinite
‘‘cold’’ medium with w50. It is assumed that the initia
dimension radius of the ‘‘hot’’ pocket isrl 0, wherel 0 is the
integral scale of turbulence.

Since the velocityv(t,x) is a Gaussian field with zero
mean, its statistical properties are determined by themodel
correlation tensor@20#

^v i~ t,x!v j~t,y!&5Bi j ~ ut2tu,x2y!, ~4!

where

Bi j ~ ut2tu,x2y!5
1

4pE E eik–„x2y…2iv~ t2t!E~k,v!k22

3S d i j2
kikj
k2 Ddkdv ~5!

and

E~k,v!5
2~e21k2!21/31z/2

p@11v2~e21k2!22/31z#
E~k!,

E~k!5
V2k2exp~2k2!

~e21k2!11/62s/2 . ~6!

This spectral representation involves three important
rameterse, s, andz @12,16,17#. The small parametere is the
ratio of the Kolmogorov length scale to the integral leng
scale@see also Eq.~3!#. The spectral exponents appearing
here may be thought of as representing a deviation of
energy spectrum from the Kolmogorov-Obukhov one in
inertial range, where as follows from Eq.~6! E(k)
;k25/31s as e!k!1. The specific feature of the energ
spectrumE(k) in Eq. ~6! is the infrared divergence of th
kinetic energy in the limit of high Reynolds numbe
(Re→` or e→0)

1

2
^v2&5E

0

`

E~k!dk;e22/31s as e→0 . ~7!

It follows from Eq. ~7! that the parameters can also be
interpreted as a measure of the infrared divergence. The
namic exponentz describes the dependence of the corre
tion time («21k2)21/31z/2 uponk. For z52/3, all ‘‘eddies’’
have identical turnover time. It is clear that the Kolmogoro
Obukhov turbulence corresponds to the case in whichs50
andz50 @20#.
-
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III. ENSEMBLE-AVERAGED UPPER BOUNDS
ON REACTION FRONT POSITION AND SPEED

In this paper we are concerned with a reaction fro
propagation from the ‘‘hot’’ pocket~3! in the limit Re→`,
that is,e→0. A specific intention is to determine the upp
bounds for the ensemble-averaged reaction front position
speed in the long-time, large-distance limit.

Before we consider this problem, it is instructive to sho
how a reaction front arises naturally as a result of the sca
procedure for a special case of initial value problem~1!–~3!
when the convective term is absent, i.e.,v(t,x)50. Here we
follow the method developed by Freidlin@14,15#.

The basic idea is an introduction of the small parame
e and rescaling the space and time in such a way that
rescaled solution of Eqs.~1!–~3! with v50, that is,
we(t,x)5w(t/e,x/e), takes only two values 0 and 1 a
e→0. This means that the entire problem of finding the wa
solution of Eqs.~1!–~3! can be reduced to the analysis of th
evolution of reaction front separating the area whe
we(t,x)→0 and the area wherewe(t,x)→1 @14,15#.

The initial value problem for the rescaled fieldwe(t,x)
takes the form

]we

]t
5eD¹2we1

1

e
c~we!we, we~0,x!5w0~ uxu!. ~8!

The solution of this problem can be found from the fun
tional equation@14,15#

we~ t,x!5Ew0„ux1~2eD !1/2W~ t !u…

3expH 1eE0tc~we
„t2s,x1~2eD !1/2W~s!…!dsJ ,

~9!

whereE denotes the expectation over the three-dimensio
Wiener processW(s).

It follows from the inequalityc(we)< c(0), Eq.~3!, and
Eq. ~9! that

we~ t,x!<
1

~4peDt !3/2
expS c~0!t

e D
3E

ux1zu,r
expS 2

z2

4eDt Ddz;expSG~ t,x!

e D ,
~10!

where

G~ t,x!5c~0!t2
~x2r !2

4Dt
Q~x2r !

andQ is a Heaviside function.
It is evident thatwe(t,x)→0 if G(t,x),0 ande→0. One

can also find thatwe(t,x)→1 if G(t,x).0 ande→0. One
may conclude that the equationG(t,x)50 determines the
position of reaction frontx(t)5r1A4c(0)Dt and speed
dx/dt5A4c(0)D.

Now let us turn to the full problem~1!–~3!. The main task
is to extend the simple analysis given above to the rand
advection problem with a view to determining the ensemb
averaged characteristics of the large scale reaction front
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Eqs. ~1!–~3!, in particular, the upper bounds for reactio
front position and speed. It follows from the results dev
oped in@11–13# that such bounds can be described throu
the effective equations with the parameters depending on
statistical characteristics of the random velocity fie
v(t,x).

In order to find the upper bound position for ensemb
averaged reaction front

SG5$xPR3: G~ t,x!50%,

we need to determine the effective functionG(t,x) @11,12#,

G~ t,x!5 lim
e→0

l~e!lnK w* S t

l~e!
,
x

e D L . ~11!

Here and throughout this paper the angular brackets^ & de-
note the ensemble averaging over velocity statistics andw*
is a solution of Eqs.~1!–~3! when c(w) is replaced by its
maximum valuec(0). To getuniformly valid result indepen-
dent of Reynolds number in the limite→0 (Re→`) we
have to find a rescaling functionl(e) with lime→0l(e)50
that makes the limit~11! nontrivial.

It follows from Eq. ~11! and the inequalityw,w* that

lim
e→0

K wS tl , xe D L 5 0 if G~ t,x!,0 ~12!
-
h
he

-

and thereforeG(t,x)50 may be regarded as an equati
determining the upper bound position for ensemble-avera
reaction front.

We first find an explicit expression for the rescaled fun
tion w(t/l,x/e) by using a functional integral technique.

Let us introduce new variables, denoted by primes, by

t85l~e!t, x85ex. ~13!

Substitution of Eq.~13! into Eq.~1! gives the equation for

we~ t8,x8!5wS t8l ,
x8
e D , ~14!

namely,

]we

]t
1

e

l
vS tl , xe D¹we5

e2D

l
¹2we1

1

l
c~ uxu,we!we,

~15!

with the initial condition

we~0,x!5w0~ uxu!, ~16!

where for convenience we have omitted the primes.
The solutionwe(t,x) of the Cauchy problem~15!, ~16!

obeys the functional integral equation@14,15#
be

al
al
we~ t,x!5Ew0„ux1z~ t !u…expH 1lE0tc~ ux1z~s!u,we
„t2s,x1z~s!…!dsJ , ~17!

whereE denotes the expectation over the trajectoriesz(s) that are the solution of the stochastic differential equations

dz~s!52
e

l
vS t2s

l
,
x1z~s!

e Dds1S 2e2D

l D 1/2dW~s!, z~0!50, 0 &s&t. ~18!

HereW(s) is the standard three-dimensional Wiener process with a probability density functional of the form

P@W#5expH 2
1

2E S dWds D 2dsJ . ~19!

In order to progress any further with the formula~17! it is necessary to have an explicit form for the mean value. It may
written in the form

we~ t,x!5E w0„ux1z~ t !u…expH 1lE0tc~ ux1z~s!u,we
„t2s,x1z~s!…!dsJ P@z~s!#Dz~s!, ~20!

where the probability density functionalP@z(s)# for the random processz(s) may be readily found from Eqs.~18! and~19!,

P@z~s!#5J expH 2
l

4e2DE0
tFdzds1

e

l
vS t2s

l
,
x1z~s!

e D G2dsJ . ~21!

The functional integration in Eq.~20! is performed over all trajectoriesz(s) starting ats50 with z(0)50. It should be noted
that the integral equation~20! is valid for any fixed realization of the random velocity fieldv. The Jacobian
J5exp(a*0

t
“•vds) corresponding to mappingz(s) ontoW(s) is equal to unity for the incompressible fluid (¹•v50).

Since we are concerned with an average value ofwe(t,x) over velocity statistics, it is convenient to make the function
integral ~20!, ~21! ‘‘linear’’ in the velocity field. By using an auxiliary vectorp(s), we replace the Lagrangian function
integral~20!, ~21! in which the random velocityv appears in quadratic form by its Hamiltonian version@21,22#. It follows from
Eqs.~20!, ~21! and the formula
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E expH i E a~s!p~s!dsJ expH 2bE p2~s!dsJDp~s!5expH 2
1

4bE a2~s!dsJ
that

we~ t,x!5E E w0„ux1z~ t !u…expH 1lE0tFc~ ux1z~s!u,we
„t2s,x1z~s!…!1l ip~s!•

dz

ds
2e2Dp2~s!

1e ip~s!•vS t2s

l
,
x1z~s!

e D GdsJDz~s!Dp~s!. ~22!

We are now in a position to find an ensemble average ofw* (t,x) appearing in the formula~11!. Using the well known
formula for the Gaussian variablej with zero mean,

^exp~aj!&5expH a2^j2&2 J ,
we obtain

K expH i el E0tp~s!•vS t2s

l
,
x1z~s!

e D dsJ L 5expH 2
e2

2l2E
0

tE
0

t

(
i , j51

3

pi~s1!pj~s2!

3K v iS t2s1
l

,
x1z~s1!

e D v j S t2s2
l

,
x1z~s2!

e D L ds1ds2J . ~23!

It follows from this result and Eq.~22! that the average value ofw* (t,x) may be written as

^w* ~ t,x!&5E E w0„ux1z~ t !u…expH 1lE0tS c„ux1z~s!u…1l ip~s!•
dz

ds
2e2Dp2~s!D ds

2
e2

2l2E
0

tE
0

t

(
i , j51

3

pi~s1!pj~s2!Bi j S us12s2u
l

,
z~s1!2z~s2!

e D ds1ds2JDz~s!Dp~s!. ~24!

Replacingp(s) by iu(s)/l and assuming that the vectoru(s) is real, we can rewrite Eq.~24! in the Hamiltonian form~one
can find a detailed discussion concerning this replacement in@23#!

^w* ~ t,x!&5E E w0„ux1z~ t !u…expH 2
1

lE0
t

u•
dz

ds
ds1

1

l
HeJDz~s!DS iu~s!

l D , ~25!

where the Hamiltonian functionalHe has a form

He@z~s!,u~s!#5E
0

tS c„ux1z~s!u…1
e2D

l2 u2Dds1 e2

2l3E
0

tE
0

t

(
i , j51

3

ui~s1!uj~s2!Bi j S us12s2u
l

,
z~s1!2z~s2!

e Dds1ds2 . ~26!

These formulas together with Eq.~11! allow us to find the effective functionG(t,x) and thereby the upper bound for th
ensemble-averaged reaction front positionSG5$xPR3:G(t,x)50% without directly solving the nonlinear problem~1!–~3!.

The asymptotic behavior of̂w* (t,x)& in the limit e→0 can be obtained by the saddle-point approximation

^w* ~ t,x!&;exp
1

l
maxH 2E

0

t

u•
dz

ds
ds1H0: z~0!50,ux1z~ t !u5r , ux1z~s!u.r J .

Substitution of this in Eq.~11! yields

G~ t,x!5maxH 2E
0

t

u•
dz

ds
ds1H0: z~0!50, ux1z~ t !u5r , ux1z~s!u.r J ~27!

provided thatH05 lime→0H
e has a nontrivial limit.

It is clear that functionsz* (s) and u* (s) that maximize the functional in Eq.~27! can be found from the Hamilton
variational equations
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dz*
ds

5
dH0

du*
,

du*
ds

52
dH0

dz*
.

Thus the problem of finding the upper bound position for large scale front has been reduced to maximizing the fu
2*0

t u•(dz/ds)ds1 H0 and finding the effective HamiltonianH05 lime→0H
e.

IV. RENORMALIZATION PROCEDURE

We can expect from the results obtained in@12,16,17# that the limite→0 might exhibit a wide range of different scalin
phenomena in the behavior of the Hamiltonian functionalHe when the spectral parameterss and z are varied. Here we
develop the explicit expressions forH0 by using the exact renormalization theory@16,17#.

First, it is convenient to perform the rescaling of the wave vectork and frequencyv as follows:

v→l~e!v, k˜ek.

Under this transformation the Hamiltonian functionalHe changes to

He5E
0

tS c„ux1z~s!u…1
e2D

l2 u2Dds1V2e2/31s1z

4p2l2 E
0

tE
0

t

(
i , j51

3

ui~s1!uj~s2!E
k
E

v
eik–†z~s1!2z~s2!‡2iv~s12s2!

3S d i j2
kikj
k2 D ~11k2!213/61z/21s/2exp~2e2k2!

11l2e24/312zv2~11k2!22/31z dkdvds1ds2 . ~28!
e
tim

o
o
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e
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e
-
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Now we are in a position to find the limitH0

5 lime→0H
e that must be uniformly valid independent of th

Reynolds number Re. The last requirement gives us the
rescaling functionl(e). In what follows we consider only
two distinct scaling regimes for which the phenomenon
infrared divergence plays the main role. It is easy to sh
that in these cases the simple diffusive scalingl(e)5e leads
to the divergence ofHe ase→0. The exact renormalization
procedure amounts to a choice of the appropriate sca
functions l(e) to avoid this singular behavior. The mor
complicated cases involving random nonlocal diffusiv
@16,17# will not be treated here.

~1! Rapid correlation time.Consider the case when

l2e24/312z→0 as e→0 . ~29!

Here we show that in the limit~29! the upper bounds can b
obtainedexactly. The first step is to choosel(e) such that
the limit ~9! is bounded and nontrivial. The above resu
show that a sufficient condition for the Hamiltonian~28! to
remain bounded ase→0 is thate2/31s1z/l251 , and hence
e

f
w

g

l~e!5e1/31s/21z/2 ~30!

provided s13z.2/3. If we consider the region wher
s13z.2/3 and 4/3.s1z, then molecular diffusion is neg
ligible becausee/l→0 ase→0.

It is evident from Eq.~28! that in the limit~29! the spec-
tral density loses its dependence on the frequencyv as e
tends to zero and this implies that the scaling procedure
gether with limit e→0 generates a white noise in time
Therefore the next step is to use the identity

1

2pE exp@ iv~s12s2!#dv5d~s12s2!

that allows us to find a relatively simple expression forH0,

H05E
0

t

@c„ux1z~s!u…1DTu
2~s!#ds,

DT5
4

3
V2E

0

`

k2~11k2!213/61s/21z/2dk. ~31!
ion
In particular, whenc5const, we have

G~ t,x!5ct2minH E
0

tS u• dzds2DTu
2D ds: z~0!50, ux1z~ t !u5r , ux1z~s!u.r J . ~32!

It is not difficult to find from Eq.~32! that

G~ t,x!5ct2
~x2r !2

4DTt
.

It is clear that the upper boundSG5$xPR3: G(t,x)50% corresponds to the outgoing spherical front with the posit
x(t)5r1A4c(0)DTt and constant velocityA4cDT.
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The results of our coarse-graining procedure allow us to conclude that in the limit~29! the large scale behaviors of the fu
problem~1!–~3! and its simplified version~8! are the same. The physical reason for this is that under the condition~29! the
renormalization procedure generates a white noise in time and therefore the large scale and long-time turbulent tran
be described by a conventional diffusion model with the effective eddy diffusivityDT . It should be noted that the case
‘‘rapid correlation time’’ is the analog of ‘‘region II’’ of Avellaneda and Majda@16,17,24# in a sense that here the time
decorrelation effects play the crucial role.

~2! Frozen turbulence limit.This limit corresponds to the case when

l2e24/312z→` as e→0. ~33!

Unlike the case of ‘‘rapid correlation time’’ considered above, no simple expression for the effective HamiltonianH0 can be
obtained here. It should also be noted that this limit is the analog of ‘‘region III’’ in@24#.

It is convenient first to perform the integration with respect to the frequencyv. Simple calculations give

He5E
0

tS c„ux1z~s!u…1
e2D

l2 u2~s! Dds1V2e4/31s

8pl3 E
0

tE
0

t

(
i , j51

3

ui~s1!uj~s2!

3E
k
eik•[z~s1!2z~s2!] S d i j2

kikj
k2 De2l21e2/32z~11k2!1/32z/2us12s2u~11k2!211/61s/2e2e2k2dkds1ds2 . ~34!

Here the factorl21e2/32z(11k2)1/32z/2 in front of us12s2u defines the inversek-dependent correlation time that continues
decrease ase→0 @see Eq.~33!#. This is a reason the limit~33! may be regarded as a ‘‘frozen turbulence limit.’’

In order for the functionalHe to converge ase→0 we must havee4/31s/l351, that is,

l~e!5e4/91s/3 ~35!

provideds13z,2/3. The range ofs for which the molecular diffusion becomes irrelevant iss,5/3.
With this scaling, we compute

H05E
0

t

c„ux1z~s!u…ds1
V2

8pE0
tE

0

tE
k

(
i , j51

3

ui~s1!uj~s2!e
ik•[z1~s1!2z2~s2!] S d i j2

kikj
k2 D ~11k2!211/61s/2dkds1ds2 . ~36!

The last result may be interpreted as follows. Asymptotically we have the front propagation in the effective sta
Gaussian random fieldveff(x) with correlation tensor

Bi j ~x2y!5
V2

4pE eik–„x2y…S d i j2
kikj
k2 D ~11k2!211/61s82dk. ~37!

The functionG(t,x) determining the upper bound position can be written as

G~ t,x!5maxH E
0

tS c„ux1z~s!u…2u
dz

dsD ds11

2E0
tE

0

t

(
i , j51

3

Bi j „z~s1!2z~s2!…ui~s1!

3uj~s2!ds1ds2 : z~0!50,ux1z~ t !u5r ,ux1z~s!u.r J .
c
e
is
is
-
ca
y,
-
t
f
t
a

that
the

ov-
g
a-
the
ian
so-
It should be noted that the Kolmogorov-Obukhov turbulen
with s50 andz50 corresponds to the ‘‘frozen turbulenc
limit’’ for which the large scale dynamics of reaction front
not as simple as for the case of ‘‘rapid correlation time.’’ It
easy to see that the lines523z12/3 represents the bound
ary between the different scaling regimes. Although the s
ing functions~30! and~35! are the same at this line, namel
l(e)5e2/32z, the functionsG(t,x) for both regions are dis
continuous across their boundary. It would be interesting
investigate the source of this singular behavior as is done
turbulent diffusion@16,17#. It is also interesting to note tha
the boundary between these regions has shifted from wh
would have been for turbulent diffusion:s12z50. The rea-
e

l-

o
or

t it

son for this phenomenon may be explained by the fact
even without convection term the appropriate scaling for
diffusion equation isl(e)5e2, but for the KPP equation it is
l(e)5e.

V. DISCUSSION AND CONCLUSIONS

We have presented an analytic study of the Kolmogor
Petrovskii-Piskunov equation with convective term involvin
three-dimensional turbulent flow with arbitrarily many sp
tial and temporal scales. This has been made possible by
use of the exact renormalization theory and the Lagrang
stochastic differential equations that enable us to write a
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lution of the KPP equation in terms of functional integral
We have developed an asymptotic method that gives

general formalism determining the upper bounds for
ensemble-averaged reaction front position and speed.
have found two distinct scaling regimes for which the ph
nomenon of infrared divergence plays the main role and m
lecular diffusion is unimportant. We have calculated t
anomalous scaling functions and effective Hamiltonians
both regimes and showed that in the case of ‘‘rapid corre
tion time,’’ when renormalization procedure generates
white noise in time contribution, the upper bound can
obtained exactly.

In our analysis we have been restricted to the ensem
averaged bounds on the reaction front. At present it is
clear whether the results on almost sure upper bounds
tained recently by Souganidis and Majda@13# can be ex-
tended to the three-dimensional random velocity field c
sidered here. It was shown in@13# that for the stationary
m

-
,

ch

s

e
e
e
-
o-

r
-
a
e

e-
ot
b-

-

turbulent shear flow the bounds for the ensemble-avera
reaction speed can greatly overestimate almost every rea
tion. It will be interesting to show the effect of such non-se
averaging behavior of reaction front for the realistic thre
dimensional turbulent flow. It would be also interesting
consider the front propagation inRd @25# and examine the
problem of statistical universality considering non-Gauss
velocity statistics@17,26#.
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