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Scaling and renormalization for the Kolmogorov-Petrovskii-Piskunov equation
with turbulent convection
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Department of Mathematical Physics, Ural State University, Yekaterinburg 620 083, Russia
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The problem of determining the upper bounds for the ensemble-averaged reaction front position and speed
in a fully developedthree-dimensionalturbulent flow has been examined, in which the reaction is of
Kolmogorov-Petrovskii-Piskunov type and turbulent velocity is a Gaussian random field exhibiting long-range
correlations and infrared divergence in the limit of large Reynolds number. An asymptotic method has been
developed that gives the general formalism for determining the upper bounds for reaction front in the long-
time, large-distance limit. Two anomalous scaling regimes and corresponding scaling functions have been
determined by the use of exact renormalization proced@®£063-651X97)03503-4

PACS numbd(s): 47.27—i, 05.40+j

I. INTRODUCTION for turbulent transporfwhile the main stages of this theory
will be given in what follows we refer to Avellaneda and
In recent years there has been a substantial theoreticajda for a complete and careful discussion and further ref-
interest in the study of reaction front propagation in turbulengerenceg16,17).
flows (see, for exampld1-3], and references thergirThe The main area of practical interest concerning reaction
main quantities of interest are the large scale turbulent flamfont propagation in a random velocity field is a turbulent
speed and its parametric dependence on the statistical ch&Q@mbustion in the so-called flamelet regifde-7]. Although
acteristics of turbulent flow. The importance of analytic pro-the theory based on the KPP equation may not be directly
cedures for determining turbulent flame velocity has long2PPlicable to premixed flametsee, however[18,19), it

been recognized because the direct numerical calculation Q€S Provide a reference point for interpreting the experi-

this quantity is usually very expensive and time consuming,mental results on the acceleration of reaction fidh1.2]

especially if we are interested in the enhanced flame speed in
An important starting point to deal with the problem of WITH RANDOM CONVECTION

turbulent reaction front propagation is the Kolmogorov-  consider a nondimensional scalar fiel¢t,x) whose dy-
PetrOVSkii-PiSKUI’IO‘(KPP) equation with random convection namical evolution is governed by the K0|m0gorov_

term. Recently a great deal of progress has been made in thigetrovskii-Piskunov equation with random convection term
theory using partial differential equatid®DE) techniques
for viscosity solutions for Hamilton-Jacobi equatidi8s-10] dp ) 3
and a rigorous renormalization proced(itd —13, but here EJ’V(LX)'V@D:DV otc(elx.e)e, xeR® (1)
the results are restricted to a rather simple case of two sepa-
rated length scales for the velocity field or two-dimensionalwhere the velocity(t,x) is assumed to be an incompressible
shear flow with many spatiotemporal scales. homogeneous isotropic Gaussian random field with zero
In this paper we attempt to remove these restrictions, bynean and the reaction rat€e|x|,¢) ¢ is of Kolmogorov-
consideringhree-dimensionalandom velocity field with ar-  Petrovskii-Piskunov type,
bitrarily many spatial and temporal scales. The main purpose
is to derive an equation determining an upper bound for c(e|x|,0)=max, (o 1C(€lX|,¢)>0, c(e[x[,1)=0.
ensemble-averaged reaction front position and speed and 2
thereby to provide the framework for a detailed study of how
the random velocity field with long-range correlations in  Here the space and time variables are rescaled so that
space and time may influence front propagation in the longspace is_measured in units of the Kolmogorov length scale
time, large-distance limit. Our method of analysis introducesy= (v*/&)4, and time is measured in units of= 7/vy.
a representation of the solution of the KPP equation withThe Kolmogorov VGIOCitlSC:’iIek:(ve)l/4 is used as unit
random convection in terms of functional integrals with re-of random velocity fieldg is the average dissipation rate of
spect to Markov processg¢é1—-15. We employ a singular energy per unit mass. We assume that the function
perturbation method involving small values of the ratio of c(e|x|,¢) varies on the integral scale of turbulence and de-
the Kolmogorov length scale to the integral length scale ofpends only on the distance from the pokst O; that is why
turbulent flow. We also use the exact renormalization theoryhe reaction rate involves a small parameter= Re %“, the
ratio of the Kolmogorov length scale to the integral length
scalel g, Re=ugly/v is a Reynolds number. If the diffusion
*Electronic address: sergei.fedotov@usu.ru coefficient D nondimensionalized by the viscosity
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v and the parametec=c(e|x|,0)=const are of order of IIl. ENSEMBLE-AVERAGED UPPER BOUNDS
unity, then the “laminar” flame velocity, = (2cD)*?is of ON REACTION FRONT POSITION AND SPEED
the order of the Kolmogorov velocity, and the “laminar” In this paper we are concerned with a reaction front
flame thicknessl, =(D/c)*? is of the order of the propagation from the “hot’ pocket3) in the limit Re—o,
Kolmogorov dissipation lengthy. that is,e—0. A specific intention is to determine the upper
The initial condition is assumed to be spherically sym-bounds for the ensemble-averaged reaction front position and
metrical, namely, speed in the long-time, large-distance limit.
Before we consider this problem, it is instructive to show
1 if ex|<r how a reaction front arises naturally as a result of the scaling

¢(0X)= o €[x|) = 0 otherwise. (3 procedure for a special case of initial value problg-(3)

when the convective term is absent, ixgt,x) =0. Here we
These data mean that at some initial time, a sphericdpllow the method developed by Freidlji4,15.
“hot” pocket with ¢=1 is introduced into an infinite The basic idea is an introduction of the small parameter
“cold” medium with ¢=0. It is assumed that the initial € and rescaling the space and time in such a way that the

dimension radius of the “hot” pocket id o, wherel, is the ~ rescaled solution of Eqs(1)-(3) with v=0, that is,
integral scale of turbulence. (. x) = ¢(t/€,x/€), takes only two values O and 1 as

Since the velocityv(t,x) is a Gaussian field with zero €—0. This means that the entire problem of finding the wave
mean, its statistical properties are determined byrtioelel ~ solution of Eqs(1)—(3) can be reduced to the analysis of the

correlation tensof20] evolution of reaction front separating the area where
¢<(t,x)—0 and the area wherg®(t,x)—1 [14,15.
(vi(t,x)vj(7,y))=Bj;(|t—7|,x—y), (4) The initial value problem for the rescaled fielsf(t,x)
takes the form
where
agDE_ 2 € 1 € € € _
or —€DViet —c(e9es @ (0 =eo(|X). (8

1 _ .
Bij(|t—7],x—y)= EJ J ek == DE (K )k ™2 _ .
The solution of this problem can be found from the func-

kikj) tional equatior{14,15
X\ & — dkdw (5) .
TR ¢=(1,%)= Epol|x+(2eD) " W(1)])
1t
and Xexp[ —f c(eS(t—s,x+(2eD)Y?W(s)))ds},
2(62+ k2)7l/3+zl2 €Jo
E(k,w)= 1+ 0221 K2) 257 E(k), 9)
where € denotes the expectation over the three-dimensional
V2k2exp( —k?) Wiener procesdV(s).
E(k)= (24 K)oz (6) It follows from the inequalityc(¢€)< c(0), Eq.(3), and
Eq. (9) that
This spectral representation involves three important pa- 1 c(0)t
rameterse, o, andz [12,16,17. The small parameter is the eE(t,x)=< 3,zexp( )
ratio of the Kolmogorov length scale to the integral length (4meDt) €
scale[see also Eq(3)]. The spectral exponert app(_aaring 72 G(t,%)
here may be thought of as representing a deviation of the XJ - dz~ex ,
[x+2z<r 4eDt €

energy spectrum from the Kolmogorov-Obukhov one in the
inertial range, where as follows from Eq®6) E(k) (10)
~k 537 a5 e<k<1. The specific feature of the energy
spectrumE(k) in Eg. (6) is the infrared divergence of the
kinetic energy in the limit of high Reynolds number (x—r)2
(Re—o or e—0) G(t,x)=c(0)t— 2Dt

where

O(x—r)

1 oo [ o3t and® is a Heaviside function.
§<V )= fo E(k)dk~e as e=0. 0 It is evident thatp€(t,x)—0 if G(t,x)<0 ande—0. One
can also find thatp¢(t,x)— 1 if G(t,x)>0 ande—0. One

It follows from Eq. (7) that the parametes can also be may conclude that the equatida(t,x)=0 determines the
interpreted as a measure of the infrared divergence. The dyosition of reaction frontx(t)=r++4c(0)Dt and speed
namic exponenk describes the dependence of the correladx/dt=4c(0)D.
tion time (e2+k?) ~3*22 uponk. Forz=2/3, all “eddies” Now let us turn to the full problerfil)—(3). The main task
have identical turnover time. It is clear that the Kolmogorov-is to extend the simple analysis given above to the random-
Obukhov turbulence corresponds to the case in whietD advection problem with a view to determining the ensemble-
andz=0 [20]. averaged characteristics of the large scale reaction front for
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Egs. (1)—(3), in particular, the upper bounds for reaction and thereforeG(t,x)=0 may be regarded as an equation
front position and speed. It follows from the results devel-determining the upper bound position for ensemble-averaged
oped in[11-13 that such bounds can be described througtreaction front.

the effective equations with the parameters depending on the We first find an explicit expression for the rescaled func-
statistical characteristics of the random velocity fieldtion ¢(t/\,x/€) by using a functional integral technique.

v(t,X). Let us introduce new variables, denoted by primes, by
In order to find the upper bound position for ensemble-
averaged reaction front t'=N(e)t, X =ex. (13
Se={xeR% G(t,x)=0}, Substitution of Eq(13) into Eq.(1) gives the equation for
we need to determine the effective functiGft,x) [11,17, r oy
@E(t,!x’):(P(_l_ ’ (14)
t X Ne
G(t,x)=|im)\(e)ln< (p*<—,—)>. (1))
=0 Ae) e namely,
Here and throughout this paper the angular bracketsle- Jo¢ € [t x €2 1
note the ensemble averaging over velocity statistics @hd ot XV(X’ —)VgoszVzgowa Xc(|x|,<pf)qof,
is a solution of Eqs(1)—(3) whenc(¢) is replaced by its J € (15
maximum valuec(0). To getuniformly valid result indepen-
dent of Reynolds number in the lim¢—0 (Re—x) we | i the initial condition
have to find a rescaling functiox(e) with lim__o\(e)=0
that makes the limit11) nontrivial. @<(0X) = go(|X)), (16)
It follows from Eq.(11) and the inequalityp<¢* that
« where for convenience we have omitted the primes.
Iim<<p<—,—)>= 0 if G(t,x)<0 (12 The solutionfpf(t,x_) of the Caughy problent15), (16)
€0 A€ obeys the functional integral equatifi,15
|
1 [t
@E(t,x)=Epo(|x+ Z(t)I)eXp{ Kﬁ)c('H z(s)|, ¢ (t—s,x+2(s)))dsy, 17

where& denotes the expectation over the trajectores that are the solution of the stochastic differential equations

1/2
dwW(s), z(0)=0, 0 ss=t. (18

dz(s)=——v

A N

t—s x+z(s)) <2€2D
ds

HereW(s) is the standard three-dimensional Wiener process with a probability density functional of the form

1((dw)\?
P[W]Iex —EJ (E ds;. (19)

In order to progress any further with the formyl&’) it is necessary to have an explicit form for the mean value. It may be
written in the form

1 [t
<P€(t,X)=f go0(|x+z(t)|)ex% XJOC(|X+Z(S)|'¢€(t—S.X+Z(S)))dS} Plz(s)]Dz(s), (20

where the probability density function®[ z(s)] for the random procesxs) may be readily found from Eq$18) and (19),

t

A
P[Z(S)]ZJ exp{ — mJ'O

The functional integration in Eq20) is performed over all trajectoriegs) starting ats=0 with z(0)=0. It should be noted
that the integral equatior(20) is valid for any fixed realization of the random velocity fied The Jacobian
J=exp(af§V -vds) corresponding to mapping(s) onto YW(s) is equal to unity for the incompressible fluii (v=0).

Since we are concerned with an average value f,x) over velocity statistics, it is convenient to make the functional
integral (20), (21) “linear” in the velocity field. By using an auxiliary vectop(s), we replace the Lagrangian functional
integral(20), (21) in which the random velocity appears in quadratic form by its Hamiltonian versjat,22. It follows from
Egs.(20), (21) and the formula

dz € [t—s x+2z(s)
as ATy T e

2
ds] . (21
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1
fexp[ ja(s)p(s)ds exp{ bJp(s)ds]Dp(s) exp{ b az(s)ds]
1 [t
¢%LM=J f¢dW+ZGHkX%XJ;

t—s x+2z(s)
N

that

) dz
c(|x+z(s)|,p(t—s,x+2(s))) + Nip(s)- ds e’Dp?(s)

+eip(s)-v

ds] Dz(s)Dp(s). (22

We are now in a position to find an ensemble average*d(t,x) appearing in the formuléll). Using the well known
formula for the Gaussian variablewith zero mean,

L)

we obtain

2 et 3
ds]>=exp{ —%LL ”2;,1 Pi(s1)p;(s2)

t—s; X+ t—s, x+
><<vi< )\Sl,x Z(Sl))vj( )\SZ,X ZG(SZ)>>dsldsz]. (23)

<ex;{l6f o) (t s x+z(s)

€

It follows from this result and Eq22) that the average value q@f* (t,x) may be written as

<<p*<t,x>>=ffgoo(|x+z<t>|>exr4 S

2 repe S S1—So| z(sy)—z(s
| | 2, pi(snpj(sz)Bi,-(' o 2o 2))dsldsz]DZ(S)Dp(S)- (24

dz
c(|x+2z(s)|)+Nip(s)- a5 eZDpz(s)) ds

Replacingp(s) by iu(s)/\ and assuming that the vectofs) is real, we can rewrite Eq24) in the Hamiltonian form(one
can find a detailed discussion concerning this replacemera3h

(p*(t,x))= J'j<p0(|x+z(t)|)exp[——J ds+ — H ]Dz(s)D(iu)(\s)), (25

where the Hamiltonian functiondd € has a form

2p 3 _ _
He[z(s),u(s)]=J:(C(|X+z(s)|)+ 6)\ )ds+—J' j Zl ui(sl)uj(sz)Bij(lsl)\SZ| ,Z(Sl) EZ(SZ))dsldsg. (26)

These formulas together with E(L1) allow us to find the effective functio®(t,x) and thereby the upper bound for the
ensemble-averaged reaction front positg={x e R®:G(t,x) =0} without directly solving the nonlinear probleft)—(3).
The asymptotic behavior dfe* (t,x)) in the limit e—~0 can be obtained by the saddle-point approximation

1 t dz
(cp*(t,x)>~exrxmax|—fu~d—sds+H°: Z(0)=0,|x+z(t)|=r, |x+z(s)|>r].
0

Substitution of this in Eq(11) yields

t dz
G(t,x)=max[—f0u-d—sds+H°: 2(0)=0, |x+z(t)|=r, |x+z(s)|>r] (27)

provided thatH%=1lim__,H¢ has a nontrivial limit.
It is clear that functiong, (s) and u, (s) that maximize the functional in Eq27) can be found from the Hamilton
variational equations
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dz, 6H® du, SHO

ds u,’ ds &z,

Thus the problem of finding the upper bound position for large scale front has been reduced to maximizing the functional
— [tu-(dz/ds)ds+ HP and finding the effective HamiltoniaH®=lim,_ oH*.

IV. RENORMALIZATION PROCEDURE

We can expect from the results obtained 12,16,17 that the limite— 0 might exhibit a wide range of different scaling
phenomena in the behavior of the Hamiltonian functioH&alwhen the spectral parametessand z are varied. Here we
develop the explicit expressions fB° by using the exact renormalization thedfty6,17].

First, it is convenient to perform the rescaling of the wave vektand frequencyw as follows:

w—Ne)w, k—ek.

Under this transformation the Hamiltonian functiom#i changes to

t
e |
0

2

€D V2 2/3+o0+z
c(x+z(s)))+ Tz—u

d5+—2—2— . IJE ui(spuj( sz)fkf gkl =z ]-lw(s )
w

kk (1+k2) 13/6+Z/2+0/2qu 2k2)
><(5ij K2 T nZe o211 k2) 252 dkdwds,ds;. (28
I
Now we are in a position to find the limitH° \(€)= e/3rolzral2 (30)

=lim._ oH* that must be uniformly valid independent of the

Reynolds number Re. The last requirement gives us the timerovided o+3z>2/3. If we consider the region where
rescaling function\(¢€). In what follows we consider only o +3z>2/3 and 4/3-0+z, then molecular diffusion is neg-
two distinct scaling regimes for which the phenomenon ofligible becauses/A —0 ase—0.

infrared divergence plays the main role. It is easy to show Itis evident from Eq(28) that in the limit(29) the spec-
that in these cases the simple diffusive scalifg) = € leads ~ tral density loses its dependence on the frequencys e

to the divergence ofi€ ase—0. The exact renormalization tends to zero and this implies that the scaling procedure to-
procedure amounts to a choice of the appropriate scalingether with limit e—~0 generates a white noise in time.
functions \(€) to avoid this singular behavior. The more Therefore the next step is to use the identity

complicated cases involving random nonlocal diffusivity

[16,17 will not be treated here. if exfiw(s;—S,) [do=8(s;—Sy)
(1) Rapid correlation timeConsider the case when 27
N2e 43220 as e—0. (29) that allows us to find a relatively simple expression K,
t
Here we show that in the limi29) the upper bounds can be HOZJ [c(|x+z(s)|)+ Dru?(s)]ds,
0

obtainedexactly The first step is to choose(e) such that

the limit (9) is bounded and nontrivial. The above results .

show. that a sufficient cgnditionZ/fst)rr t+he I;iamiltonia’ze) to DT:fVZJ K2(1+ K2)~13/6+ o2+ 22 (31)
remain bounded as— 0 is thate?*"?*?/\?=1 , and hence 3 Jo

In particular, wherc= const, we have

t dz
G(t,x)=ct—min{J ( ds —Dqu )ds: 2(0)=0, |x+z(t)|=r, |x+z(s)|>r}. (32
It is not difficult to find from Eq.(32) that
s B (x—r)?
(t,x)=ct Dot

It is clear that the upper bounfig={xe R G(t,x)=0} corresponds to the outgoing spherical front with the position

x(t)=r+4c(0)D+t and constant velocity/4cDr.
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The results of our coarse-graining procedure allow us to conclude that in thé2Bpihe large scale behaviors of the full
problem(1)—(3) and its simplified versiori8) are the same. The physical reason for this is that under the con2@prthe
renormalization procedure generates a white noise in time and therefore the large scale and long-time turbulent transport can
be described by a conventional diffusion model with the effective eddy diffusi¥ity It should be noted that the case of
“rapid correlation time” is the analog of “region II” of Avellaneda and Majdd6,17,24 in a sense that here the time-
decorrelation effects play the crucial role.

(2) Frozen turbulence limitThis limit corresponds to the case when

N2e 43122 .0 as e—0. (33

Unlike the case of “rapid correlation time” considered above, no simple expression for the effective Hamitidhiam be
obtained here. It should also be noted that this limit is the analog of “region IlI[2ij.
It is convenient first to perform the integration with respect to the frequencgimple calculations give

2

He= f(c(|x+z(s)|)+ Duz(s)

Xf ik-[z(s1)—z(sp)] 5 _ﬁ e
K k2

Here the factoh 1€ 2(1+k?)Y3~?2in front of |s; —s,| defines the inversk-dependent correlation time that continues to
decrease as— 0 [see EQq(33)]. This is a reason the limit33) may be regarded as a “frozen turbulence limit.”
In order for the functionaH€ to converge ag—0 we must have*3"?/\3=1, that is,

)\( 6) — 64/9+ ol3 (35)

2 4/3+ o

e H E Ui(s1)U;(s,)

ds+

12321 QLB 22s | (1+K2)~ 106+ 012~ “°qkd s,ds,. (34)

providedo+3z<2/3. The range o& for which the molecular diffusion becomes irrelevaniis 5/3.
With this scaling, we compute

(1+k?)~16ro2dkds,ds,. (36)

kik;
Ho—f c(|x+2z( s)|)ds+—f f f u;(Sp)u; (s,)ek [za(s1)— 22(32)1(5 _L

The last result may be interpreted as follows. Asymptotically we have the front propagation in the effective stationary
Gaussian random field.4(X) with correlation tensor

Vaoo kik; :
Bij(x—y)= Ef elk-(X—y)( 8ij— % (1+Kk?2)~16+o"2q) (37)

The functionG(t,x) determining the upper bound position can be written as

G(t,x)=max[ ft
0

X Uj(sp)dsds;: z(0)=0,|x+z(t)|=r,|x+z(s)|>r].

1t S
dS+§fo fo i,jzzl Bij(Z(Sl)_Z(SZ))Ui(Sl)

dz
c(|x+z(s)|)—ud—S

It should be noted that the Kolmogorov-Obukhov turbulenceson for this phenomenon may be explained by the fact that
with 0=0 andz=0 corresponds to the “frozen turbulence even without convection term the appropriate scaling for the
limit” for which the large scale dynamics of reaction front is diffusion equation is\(€) = €2, but for the KPP equation it is
not as simple as for the case of “rapid correlation time.” It is A(€) = €.

easy to see that the line= — 3z+ 2/3 represents the bound-

ary between the different scaling regimes. Although the scal- V. DISCUSSION AND CONCLUSIONS
ing functions(30) and(35) are the same at this line, namely, '
N(€)=€?*7, the functionsG(t,x) for both regions are dis- We have presented an analytic study of the Kolmogorov-

continuous across their boundary. It would be interesting td”etrovskii-Piskunov equation with convective term involving
investigate the source of this singular behavior as is done fahree-dimensional turbulent flow with arbitrarily many spa-
turbulent diffusion[16,17. It is also interesting to note that tial and temporal scales. This has been made possible by the
the boundary between these regions has shifted from what itse of the exact renormalization theory and the Lagrangian
would have been for turbulent diffusion:+2z=0. The rea- stochastic differential equations that enable us to write a so-
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lution of the KPP equation in terms of functional integrals. turbulent shear flow the bounds for the ensemble-averaged
We have developed an asymptotic method that gives theeaction speed can greatly overestimate almost every realiza-
general formalism determining the upper bounds for theion. It will be interesting to show the effect of such non-self-
ensemble-averaged reaction front position and speed. Wagveraging behavior of reaction front for the realistic three-
have found two distinct scaling regimes for which the phe-dimensional turbulent flow. It would be also interesting to
nomenon of infrared divergence plays the main role and moconsider the front propagation iR [25] and examine the

lecular diffusion is unimportant. We have calculated theproblem of statistical universality considering non-Gaussian
anomalous scaling functions and effective Hamiltonians fokelocity statistic§17,26.

both regimes and showed that in the case of “rapid correla-

tion time,” when renormalization procedure generates a

whitg noise in time contribution, the upper bound can be ACKNOWLEDGMENTS
obtained exactly.
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