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Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics

Sergei Fedotov*
Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom

~Received 2 November 1998!

The problem of wave-front propagation for then-dimensional reaction-diffusion system involving
Kolmogorov-Petrovskii-Piskunov kinetics and the diffusion transport with a finite velocity has been consid-
ered. By using a scaling procedure we have given an asymptotic derivation of the equation governing the
evolution of a reaction front in the long-time large-distance limit. It has been found that this equation is
identical in form to the relativistic Hamilton-Jacobi equation. In the case of a constant value of chemical rate
function we have derived exact formulas for the position of reaction front and the speed of propagation by
using relativistic mechanics techniques.@S1063-651X~99!09005-4#

PACS number~s!: 82.20.2w, 05.70.Ln, 05.60.2k
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I. INTRODUCTION

The Kolmogorov-Petrovskii-Piskunov~KPP! equation

]r

]t
5D

]2r

]z2
1Ur~12r! ~1!

and its various generalizations have attracted consider
interest in the past, because of a huge number of phys
chemical, and biological problems that can be described
terms of these equations@1–7#. Equation~1! is the simplest
reaction-diffusion equation combining both the linear diff
sion transport process and nonlinear chemical kinetics
admitting a traveling wave solution of the formr(t,z)
5c(t2uz). The basic advantage of the KPP equation is t
the speed of traveling waveu can be foundexactlyin terms
of the diffusion coefficientD and the growth rate constantU,
namely, u5A4UD ~so-called minimal speed of propag
tion!. However, from a physical point of view, the KP
equation has one disadvantage that can be explained a
lows. It is easy to see from Eq.~1! that the kinetic term
Ur(12r) ensures that the maximal growth rate of the sca
field r occurs at those regions in the space wherer is nearly
zero. At the same time the diffusion approximation for tran
port processes is a very poor one for those regions. Th
due to the fact that the ordinary diffusion termD]2r/]z2

gives rise to the infinite speed of heat/mass propagat
r(t,z) is nonzero at any timetÞ0 no matter how largez
becomes. This might lead to an overestimation of the m
mal speed of wave propagation, especially when the che
cal kinetics constantU is relatively large. One way to over
come this problem is to modify the KPP kinetics introduci
the preheated zone ahead of the reaction front where
chemical reaction is negligible@8#. Another way is to modify
the transport process based on the diffusion approxima
taking into account the finite speed of heat/mass propaga
@9–12#. A quite different approach is based on the lattice-g
models for which the KPP equation can be viewed as
mean-field approximation@13,14# ~see the review@15#!. One
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can also study the Langevin equations associated with
KPP equation~1! to analyze deviations from determinist
behavior@16,17#.

In this paper we present a mean-field theory for t
reaction-diffusion system involving diffusion with a finit
speed and KPP kinetics. Recently@12# we introduced a
probabilistic technique for analyzing reaction front dynam
for a one-dimensional reaction-diffusion system. By using
scaling procedure and functional integral technique toge
with large deviation theory for the Poisson random walk
have derived the exact formula for the reaction front spe
One of the motivations for the present study is to reinterp
this probabilistic method in terms of the nonlinear part
differential equation~PDE!-technique based on Hamilton
Jacobi type equations@18–21#. This interpretation allows us
to extend the previous method to then-dimensional case in-
volving nonuniform space distribution of the chemical ra
function, and offers a powerful way of finding the position
a reaction front and its speed of propagation.

II. FORMULATION OF THE PROBLEM

We consider a scalar fieldr(t,r ) ~temperature, concentra
tion, etc.! whose dynamics is governed by the transport eq
tion with a reaction rate term of the KPP type,

]r

]t
1“•J5U~«r !r~12r!, rPRn ~2!

where the reaction rateU(«r ) is a slowly varying function of
the space coordinate;« is a small parameter which plays
very important role in what follows;r5(x1 ,x2 , . . . ,xn).

To take into account the finite speed of the transport p
cess we assume that the heat/mass fluxJ is determined as an
integral over time of the temperature/concentration grad
multiplied by the flux kernelR(t2s) @10#,

J~ t,r !52DE
0

t

R~ t2s!“r~s,r !ds. ~3!

In this paper we choose an exponential kernel with a sin
relaxation timet,
5040 ©1999 The American Physical Society
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R~ t2s!5
1

t
expS t2s

t D . ~4!

If t50, the system~2!–~4! reduces to the classical KP
equation

]r

]t
5DDr1U~«r !r~12r!. ~5!

If U50, then we have the telegraph equation@9–11#

t
]2r

]t2
1

]r

]t
5DDr, ~6!

which describes a heat/mass transport by waves with a fi
speedv5AD/t. The small value oft explains the fact tha
in practice the diffusion approximation for the transport p
cess appears to be sufficiently accurate in typical cases.

To summarize, we have the equation

]r

]t
5

D

t E0

t

expS t2s

t DDr~s,r !ds

1U~«r !r~12r!, rPRn ~7!

with the initial condition

r~0,r !5c0~«r !, ~8!

where the initial functionc0(r ) has bounded support

V05$rPRn: c0~r !51%. ~9!

In particular, the support might have a form of the b
such that

r~0,r !5H 1 if (
i 51

n

«2xi
2<R2,

0 otherwise.

~10!

It follows from here that the small parameter« can be con-
sidered as a measure of ratio between the characteristic
thicknessAD/U and characteristic length scale of the su
port of initial distribution.

Our purpose is to study the behavior of solutions of E
~7!–~9! for large times of order«21 and find out whether or
not there exists a traveling wave solution to Eqs.~7!–~9! in
the limit t→`(«→0). In this paper we will follow Freidlin’s
idea @6,7# that if a reaction-diffusion system possesses o
unstable and one stable equilibrium, then, after appropr
rescaling in the space and time variables, the solution of
reaction-diffusion system converges to the indicator funct
of the set whose boundary may be considered as a mo
wave front separating the stable and unstable regions.

We expect that after the hyperbolic scalingt→ t/«,
r→r /« the new scalar field

r«~ t,r !5rS t

«
,
r

« D ~11!

takes only two values 0 and 1 as«→0. The problem now is
to derive the equation governing the geometrical evolution
ite
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the reaction front separating the region wherer«(t,r )→0
and the region wherer«(t,r )→1.

III. REACTION FRONT EQUATION

Now we present a heuristic derivation of the equati
governing the evolution of the reaction front. By using Eq
~7!–~9! we can write down the equation forr«(t,r ):

]r«

]t
5

D

t E0

t

expS 2
t2s

«t DDr«~s,r !ds

1
U~r !

«
r«~12r«!, rPRn ~12!

and the initial condition

r«~0,r !5c0~r !.

It is easy to see from Eq.~12! that in the limit«→0 the
reaction rate is very fast and the transport process is v
slow and therefore the solutionr« at each point, wherer«

Þ0, tends quickly to the stable equilibrium valuer«51. The
set

V t5$rPRn: lim
«→0

r«~ t,r !51% ~13!

propagates throughout the region wherer«→0 as«→0 and
our basic purpose is to find the location of the reaction fr
~the boundary of the setV t) and the rate at which it moves

Taking into account that Eqs.~3! and~4! are equivalent to

]J

]t
52

1

t
J2

D

t
“r, J~0,r !50,

we can rewrite Eq.~12! in the form

«t
]2r«

]t2
1@12tU~r !12tU~r !r«#

]r«

]t

5«DDr«1
U~r !

«
r«~12r«!. ~14!

Since r«(t,r )>0 we can make an exponential transform
tion

r«~ t,r !5 expS 2
G«~ t,r !

« D , G«~ t,r !>0. ~15!

This transformation has proved to be very useful in study
asymptotic problems for reaction-diffusion equations~see,
for example,@19,20#!. The new functionG«(t,r ) will deter-
mine the location of the reaction front in the limit«→0.

Straightforward calculation shows thatG«(t,r ) satisfies
the nonlinear PDE
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2tS ]G«

]t D 2

1@12tU~r !#
]G«

]t
1D~“G«!21U~r !

52«t
]2G«

]t2
1«DDG«1U~r !S 122t

]G«

]t D
3expS 2

G«

« D . ~16!

Since exp(2G«/«)→0 as«→0 for G«.0 we may conclude
from Eq. ~16! that the limiting function

G~ t,r !5 lim
e→0

G«~ t,r ! ~17!

obeys the nonlinear PDE of the first order,

2tS ]G

]t D 2

1@12tU~r !#
]G

]t
1D~“G!21U~r !50

@G~ t,r !.0#. ~18!

The advantage of the exponential transformation~15! is
now apparent: Eq.~18! allows us to consider the problem o
wave propagation for the reaction-diffusion system~12! in
the geometric optic approximation@6,7,19,20#. The location
of the reaction front can be determined as the boundar
the set

S5$rPRn: G~ t,r !.0%. ~19!

It is clear from Eq.~15! that r«(t,r )→0 as«→0 for r
PS. The fact that the boundary of the setS coincides with
that of V t @see Eq.~13!# has to be proved. It is easy to se
that Eq. ~18! goes over into the classical Hamilton-Jaco
equation in the limitt→0,

]G

]t
1D~“G!21U~r !50,

which is a basic tool for determining the reaction front d
namics for the classical KPP equation@17,19,20#.

IV. RELATIVISTIC HAMILTON-JACOBI EQUATION

This section concerns the derivation of the explicit rep
sentation formula forG(t,r ). The basis idea is that Eq.~18!
is identical in form to an equation arising in classical relat
ity theory. If we introduce new parameters

w~r !5
1

2 FU~r !2
1

t G , m~r !5
t

2D FU~r !1
1

t G , c25
D

t
~20!

then Eq.~18! can be rewritten in the form of the relativisti
Hamilton-Jacobi equation for a particle with a massm mov-
ing in the potential fieldw(r ) @22#,

S ]G

]t
1w~r ! D 2

2m2~r !c42c2~“G!250, rPRn
of

i

-

-

wherec is the speed of light. It is interesting to note that t
’’mass’’ m(r ) depends on the space coordinater @see Eq.
~20!#.

The Hamiltonian associated with this equation is

H~r ,p!5Am2~r !c41c2p21w~r !. ~21!

Since]G/]t52H Eq. ~18! can be rewritten as

]G

]t
1Am2~r !c41c2~“G!21w~r !50 ~22!

or

]G

]t
1A1

4 S U~r !1
1

t D 2

1
D

t
~“G!21

1

2 S U~r !2
1

t D50.

~23!

The advantage of such an analogy is that we can write do
the solution of Eq.~18! or Eq. ~22! as

G~ t,r !5 infH E
0

t

Lds: r ~0!5r , r ~ t !PV0J , ~24!

where the LagrangianL has the form@22#

L52m~r !c2A12
1

c2 S dr

dsD
2

2w~r !. ~25!

That is, the functionG(t,r ) determining the reaction fron
position @see Eq.~19!# can be computed as the minimu
over trajectories fromr (0)5r to r (t)PV0. The optimal tra-
jectories satisfy the Euler-Lagrange equation

d

dsS ]L

] ṙ •
D 2

]L

]r
50. ~26!

Using the relations~20!, we find an expression for the La
grangianL in terms of the phenomenological paramete
t, D, andU(r ),

L52
1

2 S U~r !1
1

t DA12
t

D S dr

dsD
2

2
1

2 S U~r !2
1

t D .

Thus, the analogy with the relativistic mechanics allo
us to derive the explicit expression for the functionG(t,r )
and thereby to find the reaction front position and its spe
It is clear that the calculation ofG(t,r ) is greatly simplified
when the reaction rate constantU(r ) does not depend on th
space coordinater ~see next section!.

V. EXACT FORMULA FOR A WAVE-FRONT
PROPAGATION RATE

We now consider the case of a constant value of
chemical rate functionU for which the action functionalG
can be calculated exactly. This will allow us to find explic
expressions for the position of reaction front and the spee
propagation.

When U5 const, the optimal trajectory is that of a fre
particle, i.e., the straight line connecting the pointsr and y
PV0,
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r ~s!5S y2r

t D s1r , 0<s<t. ~27!

After substituting Eq.~27! into Eqs.~24! and~25! the action
integral ~24! can be written as

G~ t,r !5 inf
yPV0

H 2mc2tA12
1

c2 S y2r

t D 2

2wtJ . ~28!

Let us denote byl (r ,V0) the minimal distance betwee
the point r and the setV0. Then, in terms of the phenom
enological parameterst, D, and U, the action functional
G(t,r ) can be rewritten as

G~ t,r !52
t

2 S U1
1

t DA12
t

D S l ~r ,V0!

t D 2

1
t

2 S 1

t
2U D .

~29!

Now we are in a position to determine the exact form
for the reaction front propagation rate. It follows from E
~26! that the setS5$rPRn:G(t,r ).0% wherer«(t,r )→0 as
«→0 can be represented as

S5$rPRn: l ~r ,V0!.ut%,

where

u5cA12S 12tU

11tU D 2

5
A4DU

11tU
, tU<1. ~30!

It is clear that the velocityu can be considered as th
propagation rate of the wave front. It follows from Eq.~30!
that the effect of diffusion with finite velocity (tUÞ0) is to
decrease the propagation rate corresponding to the clas
KPP equation. The last restrictiontU<1 comes from the
fact that the ‘‘speed of light’’c5AD/t is the maximal ve-
locity of heat/mass propagation. In other words, wave-fr
motion with greater velocity than the ‘‘speed of light’’c is
impossible.

If the support of the initial distribution has a form of th
ball with the radiusR,

V05H (
i 51

n

xi
2<R2: c51J , ~31!

then the action functionalG depends only onr 5A( i 51
n xi

2

and t,

G~ t,r !52mc2tA12
1

c2 S R2r

t D 2

2wt. ~32!
on

-

ical

t

By equatingG(t,r ) to zero, we find the exact formula for th
position of the wave frontr (t),

r ~ t !5R1ut, ~33!

with u determined by Eq.~30!.
We may call the liner (t)5R1ct with c5AD/t the pri-

mary wave front, referring to the fact thatr«(t,r )50 for r
.R1ct. In general, the formula for the propagation speeu
can be written as

u55
A4DU

11tU
if tU<1,

AD

t
if tU.1.

In the limiting case when the relaxation timet is small
compared with the chemical timeU21, that is,tU!1, we
can neglect the effect of finiteness of the velocity of he
propagation.

VI. SUMMARY

In this paper we have analyzed then-dimensional
reaction-diffusion system involving diffusion with finite ve
locity and Kolmogorov-Petrovskii-Piskunov kinetics. By u
ing hyperbolic scaling and nonlinear PDE techniques
have derived an equation governing the reaction front
namics in the long-time large-distance limit. We have sho
that the resulting equation is identical to the relativis
Hamilton-Jacobi equation for a particle moving in a potent
field. In the case of a constant value of chemical rate we h
derived the exact formula for the speed of reaction front a
shown that the wave front propagates slower than that of
classical KPP equation.

It should be noted that there are several possible di
tions to investigate. First, one may formulate the whole pr
lem in terms of variational inequality@19,20# and give the
rigorous proofs for the results presented in this paper. A
it would be interesting to apply the method developed here
the analyses of turbulent burning velocity@23–25#.
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