Two and a half hours

THE UNIVERSITY OF MANCHESTER

CALCULUS AND VECTORS B

> XX January 2019
> X. $00-$ X. 30

Answer ALL FIFTEEN questions.

The use of electronic calculators and formula tables are not permitted.
(C) The University of Manchester, 2020

1. Sketch in the complex plane the region where complex values of z satisfy

$$
3<|3 z-9+i|<6 .
$$

2. Sketch graphs of the following real-valued functions of x satisfying
(a)

$$
f(x)=-e^{-|x+2|}+1 ;
$$

(b)

$$
f(x)=\ln \left(4 x^{2}\right)
$$

3. A function f is defined by

$$
f(x)=-\sqrt{-x-1} .
$$

(a) Find a formula for the inverse function $f^{-1}(x)$.
(b) Sketch the graphs of $f^{-1}(x)$ and $f(x)$ using the same coordinate axes.
4. By using implicit differentiation, find the derivative of the inverse trigonometric function

$$
\cos ^{-1}(x)
$$

5. Find the limits
(a)

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x^{2}} ;
$$

(b)

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+10 x}-x
$$

6. Find an equation of the tangent line to the elipse

$$
x^{2}+x y+y^{2}=3
$$

at the point $(1,1)$.
7. Sketch the region between the curves $y^{2}=x$ and $x^{2}=y$ in Cartesian coordinates (x, y) and find the area of this region.
8. Find the first three nonzero terms in the Maclaurian series for the function

$$
f(x)=x e^{-x^{2}}
$$

9. The distance ℓ of the point \vec{P} from the plane $\left(\vec{r}-\vec{r}_{0}\right) \cdot \vec{n}=0$ can be calculated as

$$
\ell=\frac{\left|\left(\vec{P}-\vec{r}_{0}\right) \cdot \vec{n}\right|}{|\vec{n}|}
$$

Find the distance between the point $(2,0,1)$ and the plane that passes through the three points $(2,3,4)$, $(1,2,4)$, $(4,2,1)$.
10. The distance ℓ of the point \vec{P} from the line $\vec{r}=\vec{r}_{0}+t \vec{v}$ can be calculated as

$$
\ell=\frac{\left|\left(\vec{P}-\vec{r}_{0}\right) \times \vec{v}\right|}{|\vec{v}|}
$$

Find the distance between the point $(2,2,1)$ and the line

$$
2 x-4=y-3=-\frac{z}{2} .
$$

11. Sketch the region D between $y=2 x, y=2, x=0$ and evaluate the following integral

$$
\iint_{D} e^{y^{2}} d y d x
$$

12. Use polar coordinates to evaluate the following integral

$$
\iint_{D} d A
$$

where D is the interior of the curve $x^{2}-6 x+y^{2}=0$.
13. Find the volume of the solid bounded by the plane $z=0$ and the paraboloid

$$
z+x^{2}+y^{2}=1
$$

14. Find an equation of the tangent plane to the surface

$$
z=\sqrt{x+e^{4 y}}
$$

at the point $(3,0,2)$.
15. Find all critical points of the function

$$
f(x, y)=e^{4 y-x^{2}-y^{2}}
$$

and identify whether each one is a maximum, a minimum or a saddle point.

