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Proliferation and migration dichotomy of the tumor cell invasion is examined within two non-Markovian
models. We consider the tumor spheroid, which consists of the tumor core with a high density of cells and the
outer invasive zone. We distinguish two different regions of the outer invasive zone and develop models for both
zones. In model I we analyze the near-core-outer region, where biased migration away from the tumor spheroid
core takes place. We suggest non-Markovian switching between the migrating and proliferating phenotypes of
tumor cells. Nonlinear master equations for mean densities of cancer cells of both phenotypes are derived. In
anomalous switching case we estimate the average size of the near-core-outer region that corresponds to sublinear
growth 〈r(t)〉 ∼ tμ for 0 < μ < 1. In model II we consider the outer zone, where the density of cancer cells is
very low. We suggest an integrodifferential equation for the total density of cancer cells. For proliferation rate we
use the classical logistic growth, while the migration of cells is subdiffusive. The exact formulas for the overall
spreading rate of cancer cells are obtained by a hyperbolic scaling and Hamilton-Jacobi techniques.
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I. INTRODUCTION

Clinical investigations of a glioma cancer show that the
proliferation rate of migratory cells is essentially lower
in the invasion region than in the tumor core [1,2].
This phenomenon is known as the migration-proliferation
dichotomy. Proliferation and migration of cells are mutually
exclusive: the high motility suppresses cell proliferation and
vice versa. This finding triggered extensive theoretical studies
that resulted in several phenomenological models [3–14].
A switching process between two phenotypes still is not
well understood, and a lot of efforts are taken to develop
relevant models with different mechanisms of switching of
the glioma cells. It was suggested by Khain et al. [3,4] that
the motility of cancer cells is a function of their density.
Multiparametric modeling of the phenotype switching was
considered in Ref. [5]. The agent-based approach to simulate
multiscale glioma growth and invasion was used in Refs. [6,7].
Subdiffusive cancer development on a comb was studied in
Ref. [8]. A stochastic approach for the proliferation-migration
switching involving only two parameters was proposed in
Refs. [9,10] where the transport of cancer cells was formulated
in terms of a continuous time random walk (CTRW). A “go
or grow” mechanism was proposed in Ref. [11], where the
transition to invasive tumor phenotypes can be explained on
the basis of the oxygen shortage in the environment of a
growing tumor. Phenotypic switching due to density effect
was also suggested in Refs. [12,13]. Both numerical and
analytical approaches were developed in Ref. [14] to study
the glioma propagation in the framework of reaction-diffusion
equations, where the phenotype switching depends on oxygen
in a threshold manner. Collective behavior of brain tumor
cells under the hypoxia condition was studied in Ref. [15].
We should also mention the cellular automaton modeling for
tumor invasion [16]. The multiscale approaches for modeling
of tumor growth was reviewed in Ref. [17].

One of the main features of malignant brain cancer is
the ability of tumor cells to invade the normal tissue away
from the multicell tumor core, and the motility is the most
critical feature of brain cancer, causing treatment failure [18].
The main problem in glioma treatment is how to distinguish
the genuine boundaries of the invaded area. There is a
need for a proper description of cancer cell motility. As
shown in Refs. [19,20], and then verified in Refs. [9,10], the
standard diffusion approximation for the transport together
with a logistic growth yields an overestimation of the overall
propagation rate. The main reason for employing the CTRW
models [21–23], beyond the standard diffusion approximation,
is to give the mesoscopic description of cell motility by taking
into account memory effects [24] and anomalous dynamics of
cell migration [25–27].

To describe a migration-proliferation dichotomy, one can
use the standard phenomenological model involving reaction-
diffusion equations. In this model one assumes that the cancer
cells can be in two states: mobile state (migratory phenotype)
and immobile state (proliferating phenotype). If we introduce
the density of the cells of migrating phenotype, n1(t,x),
and the density of the cells of proliferating phenotype, n2(t,x),
then the system of equations can be written as

∂n1

∂t
+ ∇ · (vn1) = ∇ · (D∇n1) − β1n1 + β2n2, (1)

∂n2

∂t
= f (n)n2 + β1n1 − β2n2 , (2)

where v is the advective velocity, D is the diffusion coefficient.
The switching between two phenotypes is determined by the
switching rates β1 and β2. The nonlinear function f (n) is
the proliferation rate, where n = n1 + n2. For example, the
logistic growth rate corresponds to

f (n) = U

[
1 − n

K

]
, (3)
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where U is the cell proliferation rate and K is the carrying ca-
pacity. It should be noted that the reaction-diffusion equations
are standard and very effective tools for the analysis of cancer
cell invasion involving diffusion and directed response of the
cancer cells to extracellular matrix gradients (haptotaxis) and
chemoattractants gradient (chemotaxis) [28–32]. In particular,
we mention the “acid-mediated tumor invasion” models
[33–35] in which tumor cells create an acidic environment
leading to normal cell death and subsequent tumor invasion.

In our recent papers [9,10] we suggested a model for tumor
cell invasion involving non-Markovian anomalous transport
and Markovian phenotype switching. The main idea was to
use a mesoscopic approach for the cell transport involving the
CTRW. We have taken into account the subdiffusive behavior
of cell transport, which leads to an essential decrease in cell
mobility. The resulting master equations for cell densities are
nonlocal in time and space,

∂n1

∂t
=

∫ t

0

∫
Rd

α(t − t ′)[n1(t ′,x − z) − n1(t ′,x)]

× ρ(z)dzdt ′ − β1n1 + β2n2, (4)

∂n2

∂t
= f (n)n2 + β1n1 − β2n2. (5)

The memory kernel α(t) is defined in terms of its Laplace
transform:

α̃(s) = (s + β1)ψ̃(s + β1)

1 − ψ̃(s + β1)
, (6)

and establishes the relationship between the transport memory
kernel α(t) and the waiting-time probability distribution
function (PDF) ψ(t) for jumps in terms of their Laplace
transforms. The jump lengths are described by the PDF
ρ(z). The phenotype switching process in Eqs. (4) and (5)
is continuous time Markov chain with rates β1 and β2.

The purpose of this paper is to develop two alternative
models of the migration-proliferation dichotomy. In the first
model (in the sequel model I) we take into account the
anomalous switching between two phenotypes of cancer cells
in a closed vicinity of the tumor core. This anomalous
switching was neglected in our previous models [9,10]. The
second model (model II) describes front propagation of glioma
cells on the boundary edge of the tumor development. In
this case, one concerns with the reduction of the system of
equations (4) and (5) to a single equation for a total density
n = n1 + n2. The advantage of this reduction is the possibility
to find the exact expression for the rate of glioma invasion.

II. MODEL I: NON-MARKOVIAN
PROLIFERATION-MIGRATION SWITCHING

In this section we consider the growing tumor spheroid,
which consists of the tumor core with a high density of cells
and the outer invasive zone where the cell density is smaller
than in the tumor spheroid core. The mobile cells are biased
to migrate away from the tumor spheroid core. The main
reasons for this radial motility are the nonuniform nutrient,
oxygen concentration and the gradient of cell adhesion sites.
In the general case the advection term in Eq. (1) involves a
position and time dependent velocity field. In what follows,

we assume for simplicity that the cells migrate with a constant
velocity v. To validate this assumption, one can consider
the case when the density of the proliferating cancer cells
is very low in the outer region and the nutrition process
can be considered as a time independent process with a
constant gradient. It should be also noted that simplicity does
not mean triviality. Indeed, the velocity of cell migration
is assumed to be constant due to the following reasons.
In general, chemotaxis, haptotaxis, and fluctuations in the
nutrition transport are extremely complicated processes that
take place simultaneously. Therefore for long-time window
averaging it is physically reasonable to take into account only
the average constant advection velocity. This simplification
makes it possible to analyze the system analytically without
missing the main details of the anomalous transport.

Unlike in our previous works [9,10], in model I we will
focus on the non-Markovian switching process (proliferation
and migration). The Markovian assumption has previously
been made for mathematical convenience. Here our intention is
to develop a more realistic theory for the phenotype switching.
We adopt the following stochastic model for migration-
proliferation dichotomy. The individual cell moves with the
speed v along the radial direction during random time T1

before switching to the proliferating state. A cell spends a
random time T2 in the proliferating state before switching to
the migrating state again. We denote the “migrating” time PDF
by ψ1(τ ) and the residence time PDF for the proliferating state
by ψ2(τ ).

The Markovian model with switching rates β1 and β2 corre-
sponds to the exponential time PDF’s ψk(τ ) = βk exp(−βkτ ),
k = 1,2. The balance equations for the mean densities n1(t,r)
and n2(t,r) are

∂n1

∂t
+ v

∂n1

∂r
= −β1n1 + β2n2,

∂n2

∂t
= f (n)n2 + β1n1 − β2n2,

where r is the radial distance from a point to the origin (the
center of tumor core).

In what follows we consider arbitrary time PDF’s ψk(τ )
including power law distributions. In this non-Markovian case
the balance equations for the densities can be written as a
system of integrodifferential equations,

∂n1

∂t
+ v

∂n1

∂r
= −i1(t,r) + i2(t,r), (7)

∂n2

∂t
= f (n)n2 − i2(t,r) + i1(t,r), (8)

where i1(t,r) and i2(t,r) describe the phenotype switching
rates between migrating and proliferating populations:

i1(t,r) =
∫ t

0
I1(t − t ′)n1(t ′,r − v(t − t ′))dt ′, (9)

i2(t,r) =
∫ t

0
I2(t − t ′)n2(t ′,r)e

∫ t

t ′ f (n(s,r))dsdt ′. (10)

Derivation of integrodifferential equations (7)–(10) is pre-
sented in the next subsection. Note that this non-Markovian
motility model can be used for the analysis of experimental
time series for trajectories of cells that have the memory [24].
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It should be noted that the diffusion term D∂2n1/∂r2 can be
also taken into account by modifying Eqs. (7) and (9). The
memory kernel Ii(t) is defined by the following ratio:

Ĩk(s) = ψ̃k(s)

�̃k(s)
, k = 1,2 . (11)

Here ψ̃k(s) and �̃k(s) are the Laplace transforms of resi-
dence time PDF’s ψk(τ ) and survival probability �k(t) =∫ ∞
t

ψk(τ )dτ correspondingly. The switching rate i1(t,r) de-
scribes the average flux of cells from migrating state to
proliferating state. The characteristic feature of the flux of
cells from proliferating state to migrating state i2(t,r) is that it
depends on proliferating rate f (n) [36,37]. This phenomenon
does not exist in the Markovian case for which ψk(τ ) =
βk exp(−βkτ ) and the memory kernel is the δ function,

Ik(t) = βkδ(t). (12)

In this case, it follows from Eqs. (9), (10), and (12) that

ik(t,r) = βknk(t,r), k = 1,2 . (13)

A. Markovian model with structured densities

The purpose of this subsection is to formulate the Marko-
vian model for the transport and reactions of cancer cells
and derive non-Markovian master equations (7) and (8) with
Eqs. (9) and (10). One can introduce transition probabilities
β1(τ ) and β2(τ ) that depend on the residence time τ in the
migrating and proliferating states correspondingly [38]. It is
also convenient to introduce the structured densities of cancer
cells that depend on τ [39]. Let ξ1(t,τ,r) be the density of
migrating cells at time t at point r whose residence time
in the migrating state lies in the interval (τ,τ + dτ ). The
corresponding density of cells in proliferating state ξ2(t,τ,r).
The obvious purpose of introduction of additional variable τ

is to set up the Markovian model for densities ξk(t,τ,r). We
assume that initial conditions are

ξk(0,τ,r) = n0
k(r)δ(τ ), k = 1,2, (14)

where n0
k(x) is the initial densities of cancer cells, so

0 � τ � t.

Integration of structured densities ξk(t,τ,r) over residence time
variable τ gives the mean densities [39]

nk(t,r) =
∫ t

0
ξk(t,τ,r)dτ, k = 1,2. (15)

Phenotype switching rates i1(t,r) and i2(t,r) in Eq. (7), (8) can
be defined as

ik(t,r) =
∫ t

0
βk(τ )ξk(t,τ,r)dτ, k = 1,2 . (16)

The meaning of Eq. (16) is that the product βk(τ )ξk(t,τ,r) is the
rate corresponding to a particular residence time τ. To get the
total rate ik(t,r) we need to integrate βkξk over variable τ from
0 to t . It follows from Eqs. (15) and (16) that for βk = const,
we have ik(t,r) = βknk(t,r). The purpose now is to express i1

and i2 in terms of the mean densities n1 and n2, when βk(τ )

depends on τ. We note that the boundary conditions at τ = 0
are

i1(t,r) = ξ2(t,0,r), i2(t,r) = ξ1(t,0,r). (17)

Let us formulate Markovian balance equations for structured
densities ξ1(t,τ,r) and ξ2(t,τ,r):

For a migrating state

∂ξ1

∂t
+ ∂ξ1

∂τ
+ v

∂ξ1

∂r
= −β1(τ )ξ1, (18)

For a proliferating state

∂ξ2

∂t
+ ∂ξ2

∂τ
= −β2 (τ ) ξ2 + f (n)ξ2. (19)

Using the method of characteristics, we obtain the solutions to
Eqs. (18) and (19):

For a migrating state(0 � τ < t)

ξ1(t,τ,r) = ξ1(t − τ,0,r − vτ )e− ∫ τ

0 β1(s)ds . (20)

For a proliferating state(0 � τ < t)

ξ2(t,τ,r) = ξ2(t − τ,0,r)e− ∫ τ

0 β2(s)ds+∫ t

t−τ
f (n(s,r))ds . (21)

Both solutions (20) and (21) involve a common exponential
factor that can be interpreted as the survival function �k(τ ):

�k(τ ) = e− ∫ τ

0 βk(s)ds, k = 1,2. (22)

Taking into account the boundary conditions (17) and (22) we
can write

ξ1(t,τ,r) = i2(t − τ,r − vτ )�1(τ ), (23)

and

ξ2(t,τ,r) = i1(t − τ,r)�2(τ )e
∫ t

t−τ
f (n(s,r))ds . (24)

Note that the residence time PDF ψk(τ ) = �̇k(τ ) can be
written in terms of the transition rate βk(τ ) as follows [38]:

ψk(τ ) = βk(τ )e− ∫ τ

0 βk(s)ds, k = 1,2. (25)

The next step is the derivation of integral equations for
ik(t,r) and nk(t,r) (similar equations were postulated in
Ref. [40]) from which the explicit expressions for ik(t,r),
k = 1,2, Eqs. (9) and (10), can be found (see the Appendix).

B. Anomalous switching and sub-ballistic motion

In this subsection we determine an average position of a
migrating cancer cell 〈r(t)〉. Since the cancer cell proliferation
depends on many various conditions, we assume that a
characteristic proliferating residence time scale is absent.
Therefore the residence time PDF ψ2(τ ) for proliferating state
behaves like a power law,

ψ2(τ ) ∼
(

τ2

τ

)1+μ

, 0 < μ < 1, (26)

as τ → ∞. Here τ2 is a parameter with units of time. Contrary
to the proliferating process, an average transport time is finite.
Therefore we assume that the residence time PDF ψ1(τ ) is
exponential:

ψ1(τ ) = β1e
−β1τ ,
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where β1 is constant. The Laplace transform of ψ1(τ ) is

ψ̃1(s) = β1

β1 + s
. (27)

The purpose now is to show that if the mobile cells
move with a constant velocity v along the radial direction,
then the mean cell position 〈r(t)〉 increases as tμ for 0 <

μ < 1 (anomalous advection or sub-ballistic motion). Note
that experimental data [25,26] show anomalous sub-ballistic
superdiffusive dynamics of cell migration.

The Laplace transform ψ̃2(s) corresponding to Eq. (26) can
be approximated by

ψ̃2(s) ∼ 1 − (τ2s)μ, 0 < μ < 1 (28)

for small s. The mean waiting time 〈τ 〉 = ∫ ∞
0 τψ2(τ )dτ is

infinite in this case.
To find the average position 〈r(t)〉 of cancer cells for large

time asymptotic t → ∞, we use the following idea. For a small
proliferation rate f (n), the average position 〈r(t)〉 can be found
as the product of the average number of jumps 〈N (t)〉 from
proliferating state to migrating state and the distance v〈T 〉,
where 〈T 〉 = β−1

1 is the average time spent in a migrating
state. Then

〈r(t)〉 = v〈N (t)〉
β1

.

It is well known from the renewal theory, e.g., [38,41], that the
Laplace transform of P (n,t) = Pr[N (t) = n] is

P̃ (n,s) = ψ̃n
2 (s)[1 − ψ̃2(s)]

s
. (29)

The Laplace transform of the average number of jumps from
proliferating state 〈N (t)〉 is

〈Ñ (s)〉 =
∞∑

n=0

nP̃ (n,s) = ψ̃2(s)

s[1 − ψ̃2(s)]
.

It follows from Eq. (28) that 〈Ñ (s)〉 ∼ τ
−μ

2 s−(1+μ) as s → 0
and

〈N (t)〉 ∼ tμ

�(1 + μ)τμ

2

.

Finally, in the limit t → ∞ the average position of cancer cell
is

〈r(t)〉 ∼ vtμ

�(1 + μ)β1τ
μ

2

, 0 < μ < 1, (30)

which is sublinear. One can show that 〈r2(t)〉 ∼ t2μ. This is
due to anomalous switching [42] described by proliferating
residence time PDF (26) with infinite mean residence time.
Note that these results can be obtained directly from the
non-Markovian balance equations (7)–(10). Our interpretation
of Eq. (30) is that the average size of the near-core-outer region
grows as tμ. This anomalous advection reflects the memory
effect corresponding to cell trapping in the proliferating state.
Of course, μ = 1 corresponds to the ballistic motion of cancer
cells. Another specific property of the anomalous advection
is superdiffusion of cancer cells for 1/2 < μ < 1, when the
mean squared displacement (MSD) 〈r2(t)〉 ∼ t2μ. Subballistic
superdiffusive behavior of the MSD in time was observed in

experiments on wild-type and mutated epithelial cells [25]
and cancer cells [26]. It should be noted that these anomalous
properties of cell transport have been previously explained
by the fractional Klein-Kramers equation for the PDF of the
velocity and position of a particle [25]. This equation assumes
a power-law decaying autocorrelation function 〈v(t)v(0)〉 for
a velocity v(t), which implies the superdiffusive behavior of
the mean squared displacement. It follows from the standard
equation d〈r2(t)〉/dt = 2

∫ t

0 〈v(t)v(0)〉dt. Note that sublinear
dependence of the first moment 〈r(t)〉 and superdiffusive
behavior of the second moment 〈r2(t)〉 can be also obtained
by using the Galilei variant fractional diffusion-advection
equation (FDAE) (see details on pp. 33–35 of Ref. [22] and
see Ref. [27]). In this paper we offer an alternative explanation
of sub-ballistic superdiffusive transport based on the two-state
model with anomalous switching with the exponent μ in the
interval 1/2 < μ < 1. It would be also interesting to consider
the phenomenon when the MSD undergoes a transition from
subdiffusive to superdiffusive behavior with time [43].

III. MODEL II: NON-MARKOVIAN TRANSPORT
WITH MEMORY

In this section we are concerned with the problem of cancer
cells spreading in the outer invasive zone of the growing
tumor spheroid where the density of cells is very low. For
the logistic growth rate (3), this outer zone determines the
rate at which total population of cancer cells spreads. In this
region we can neglect the biased movement of cancer cells and
consider only transport along the radial direction in diffusion
approximation. By assuming the general form of waiting time
PDF ψ(t) for jumps, we deal with non-Markovian transport.
The curvature effects can be also neglected. Effectively we
consider the plane front propagation. Here we adopt the idea
of the local equilibrium of the switching process. The densities
n1(t,r) and n2(t,r) can be written in terms of the total density
n(t,r)= n1(t,r) + n2(t,r) as follows:

n1(t,r) = p1n(t,r), n2(t,r) = p2n(t,r), (31)

where p1 + p2 = 1. The governing equation for n is

∂n

∂t
= p1σ

2

2d

∂2

∂r2

∫ t

0
Kn(t,t ′)n(t ′,r)dt ′ + p2Un

(
1 − n

K

)
,

(32)

where σ 2 is the variance of jumps PDF ρ(r) and d is the
dimension. This equation tells us that the rate of change of
the total density n depends on transport and proliferating
terms with corresponding weights p1 and p2. It follows from
the general theory [44–48] that the transport kernel Kn(t,t ′)
depends on the proliferation term and can be written in two
different forms:

Kn(t,t ′) = K0(t − t ′)ep2U
∫ t

t ′ (1−n(s,r)/K))ds (33)

and

Kn(t,t ′) = K0(t − t ′)e−(p2U/K)
∫ t

t ′ n(s,r)ds , (34)
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where K0(t) is defined in terms of its Laplace transform,

K̃0(H ) =
∫ ∞

0
K0(t)e−Htdt = Hψ̃(H )

1 − ψ̃(H )
.

The last formula establishes the relationship between K0(t)
and ψ(t) [22]. The reason why we use the notation H for
the Laplace variable instead of the standard notation s will be
explained in the next subsection.

The first kernel (33) corresponds to the case when the “new-
born” cancer cells have the same waiting time PDF as their
“parents.” In the second case (34), when a new cancer cell is
produced, it is given a new waiting time for a jump (see details
in Ref. [23]). Non-Markovian reaction-transport equation (32)
can be considered as phenomenological integrodifferential
equation that takes into account transport memory effects.
Equation (32) can be also derived from Eqs. (4) and (5) together
with Eqs. (3) and (31) under diffusion approximation.

As an example, consider subdiffusive transport for which
the waiting time pdf ψ(t) has a power-law tail: ψ(t) ∼
(τ0/t)1+α with 0 < α < 1 as t → ∞ [22]. One can use
the following expression for the survival probability �(t) =∫ ∞
t

ψ(t)dt :

�(t) = Eα

[
−

(
t

τ0

)α]
, 0 < α < 1, (35)

where Eα[x] = ∑∞
0 xn/�(αn + 1) is the Mittag-Leffler func-

tion. The Laplace transform of ψ(t) is

ψ̃(H ) =
∫ ∞

0
ψ(t)e−Htdt = 1

1 + (τ0H )α
(36)

and therefore the Laplace transform of the memory kernel is

K̃0(H ) = H 1−α

τα
0

. (37)

Equation (32) with the kernel (33) takes the form of fractional
equation

∂n

∂t
= p1Dα

∂2

∂r2

{
ep2U

∫ t

0 (1−n(s,r)/K)dsD1−α
t [n(t,r)

× e−U
∫ t

0 (1−n(s,r)/K)ds]
} + p2Un(1 − n/K) , (38)

where Dα = σ 2/2dτα
0 is the anomalous diffusivity and D1−α

t

is the Riemann-Liouville fractional derivative defined as

D1−α
t n(t,r) = 1

�(1 − α)

∂

∂t

∫ t

0

n(τ,r)dτ

(t − τ )α
.

A. Cancer spreading rate

Equations (32) and (38) allow us to find the exact formula
for the overall rate u at which cancer cells spread. For the
classical Fisher equation with frontlike initial condition, the
propagation rate is u = 2

√
DU , where D is the diffusion

coefficient and U is the proliferation rate [49]. The speed
of this front is determined by the leading edge of the cells
profile where the density is very small. The main aim of this
subsection is to find the dependence of this propagation rate
on the second moment for random jumps σ 2 and memory
kernel (33). We find the rate u without resolving the shape of
the traveling waves [23]. Here we use a standard technique of

hyperbolic scaling r → r/ε, t → t/ε. The density nε(t,r) =
n(t/ε,r/ε) can be written in the exponential form

nε(t,r) = A0 exp

(
−Gε(t,r)

ε

)
, (39)

where A0 is a constant. The non-negative function Gε(t,r)
determines the position of the front in the limit ε → 0. It
follows from Eq. (39) that the equation

lim
ε→0

Gε(t,r(t)) = 0 (40)

gives us the spreading front position r(t) in the long-time
and large-distance limit [23]. Substitution of the exponential
transformation (39) into Eq. (32) with kernel (33) yields the
integrodifferential equation for G(t,r) = limε→0 Gε(t,r),

∂G

∂t
+ p1σ

2

6

(
∂G

∂r

)2 ∫ ∞

0
K(s) exp

(
s

[
∂G

∂t
+ p2U

])
ds

+p2U = 0. (41)

We interpret G(t,r) as the action function such that

H = −∂G

∂t
, p = ∂G

∂r
(42)

are the Hamiltonian and the generalized momentum. It should
be noted that the Hamiltonian H plays the role of the Laplace
variable. Equation (41) is the Hamilton-Jacobi equation, which
can be rewritten as

∂G

∂t
+ H

(
∂G

∂r

)
= 0, (43)

where

H (p) = p1σ
2

6
p2K̃0(H − p2U ) + p2U. (44)

For the memory kernel (34) we find that the Hamiltonian is

H (p) = p1σ
2

6
p2K̃0(H ) + p2U. (45)

The overall propagation rate u can be found from Ref. [23]

u = ∂H

∂p
= H

p
. (46)

1. Markovian case

For the Markovian case when the waiting time PDF is
exponential,

ψ(t) = λ exp(−λt), (47)

we obtain ψ̃(H ) = λ/(λ + H ). Therefore the Laplace trans-
form of memory kernel is constant, that is K̃0(H ) = λ = const.
In this case the Hamiltonian in Eq. (44) is

H = p1Dp2 + p2U (48)

with the diffusion coefficient D = λσ 2/6. We find from
Eq. (46) that

p =
√

p2U

p1D
, H = 2p2U. (49)
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The overall front propagation rate is

u = 2
√

p1p2UD. (50)

For p1 = p2 = 1/2, this result yields a half of the classi-
cal Fisher–Kolmogorov-Petrovskii-Piskunov (FKPP) formula
[23].

2. Non-Markovian anomalous case

Now we consider the power-law distribution for the waiting
time PDF,

ψ(t) ∼ (t/τ0)−1−α, 0 < α < 1, (51)

as t → ∞. Using Eqs. (37) and (44), one can obtain the
Hamiltonian in subdiffusive case:

H (p) = p1Dα(H − p2U )1−αp2 + p2U, (52)

where Dα = σ 2/6τα
0 is a generalized diffusion coefficient.

First we find from Eq. (52) the momentum p as the function
of the Hamiltonian H ,

p(H ) =
√

H − p2U

p1Dα(H − p2U )1−α
. (53)

This expression together with Eq. (46) gives us the equation
for H ,

H
d ln p(H )

dH
= 1. (54)

We obtain

p =
√

(αp2U )α

(2 − α)αp1D
, H = 2p2U

2 − α
. (55)

So the cancer spreading rate u = H/p is

u = 2

√
(p2U )2−αp1Dα

(2 − α)2−ααα
. (56)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

u/
u 0

Uτ
0
=0.3

Uτ
0
=0.5

Uτ
0
=0.7

Uτ
0
=1

FIG. 1. The ratio of anomalous spreading rate u given by Eq. (56)
and classical diffusion propagation rate u0 = 2

√
p1p2UD vs anoma-

lous exponent α for p1 = 0.5, λτ0 = 1, and Uτ0 = [0.3,0.5,0.7,1].
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FIG. 2. The ratio of anomalous spreading rate u given by
Eq. (56) and classical diffusion propagation rate u0 = 2

√
p1p2UD

vs dimensionless cell proliferation rate Uτ0 for p1 = 0.5, λτ0 = 1,
and α = [0.3,0.5,0.7,1].

For the kernel (34) the Hamiltonian is H (p) =
p1DαH 1−αp2 + p2U. One can find the following propagation
rate:

u =
√

(p2U )2−αp1Dα(3 − α)3−α

(2 − α)2−α
, (57)

which is slightly different from Eq. (56). For α = 1 and λτ0 =
1 both formulas coincide with Eq. (50). It is convenient to
rescale anomalous propagation rate u by the rate of the standard
front propagation u0 = 2

√
p1p2UD. Figure 1 shows the ratio

u/u0 as the function of anomalous parameter α. It is clear
that the subdiffusion decreases the effective propagation rate
compared to the classical diffusion. For small α ∼ 0.2, the
reduction of propagation rate is more than 50%. An interesting
feature of both formulas is the dependence of the propagation
rate u on the proliferation rate U and anomalous exponent
α: u ∼ U (2−α)/2. Figure 2 demonstrates the dependence of
the rescaled front propagation rate on the dimensionless cell
proliferation rate Uτ0. One can see from Eq. (56) and Fig. 2
that the front propagation rate is a monotonically increasing
function of the proliferation rate U and is strongly affected
by the subdiffusion parameter α. It should be noted that the
propagation rate for some subdiffusion-reaction systems can
be zero for subdiffusive transport [50–52]. The discussion of
this issue can be found in Ref. [53].

IV. CONCLUSIONS

We have developed two non-Markovian models for a
migration-proliferation dichotomy in the spreading of tumor
cells in the invasive zone. In the migratory state the cells
move without proliferation, while in the proliferating state
the cancer cells do not migrate. We have considered the
growing tumor spheroid, which consists of the tumor core
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with a high density of cells and the outer invasive zone. We
have distinguished two different regions of the outer invasive
zone and suggested two corresponding models: model I and
model II.

In model I we have considered the near-core-outer region,
where biased migration away from the tumor spheroid core
takes place. Previous works by the authors [9,10] have
neglected non-Markovian switching between migrating and
proliferating phenotypes of cancer cells. In the present model
we have taken into account anomalous switching and derived
corresponding nonlinear master equations for mean densities
of cells of both phenotypes. This non-Markovian motility
model can be used for the analysis of experimental time
series for trajectories of cells with memory [24]. We have
been able to estimate the average size of the near-core-outer
region that corresponds to sublinear grows in time: 〈r(t)〉 ∼ tμ

for 0 < μ < 1. Straightforward measurements of r(t) in vitro
experiments, probably, make it possible to estimate parameters
of switching between the two phenotypes. It should be
noted that superdiffusive behavior of cell transport has been
previously explained by the fractional Klein-Kramers equation
[25] or the Galilei variant fractional diffusion-advection
equation (FDAE) [22]. In this paper we suggest an alternative
explanation of superdiffusive subballistic movement of cancer
cells based on the two-state model with anomalous switching
for which the mean squared displacement (MSD) 〈r2(t)〉 ∼ t2μ

for 1/2 < μ < 1.

The second model, model II, corresponds to the outer
zone, where the density of cancer cells is very low. For
proliferation rate we used the classical logistic growth, while
the migration of cells was subdiffusive. Unlike our previous
works [9,10], we have managed to derive the exact formulas
for the minimal spreading rate of cancer cells. We have
shown that the subdiffusive transport of cancer cells leads to a
nontrivial dependence of spreading rate u on the proliferation
rate U : u ∼ U (2−α)/2, where α is the anomalous exponent
(0 < α � 1). It follows from Eq. (56) that in the subdiffusive
case we observe a stronger dependence of propagation speed
on proliferation rate U compared to the classical Fisher
equation: u ∼ U 1/2.

We should mention the fact that our reaction-transport
models (model I and model II) are pretty universal and
have possible applications in physics of random media,
ecology, population theory, and cellular biology. Both models
belong to a widely used class of transport models with a
so-called resting phase. Examples of quiescent states are
porous media with immobilized particles, hunting spots for
predators, reproduction sites, nerve cells, and microbes at rest,
etc. Transport theory with resting phases is well developed
only for Markov switching processes [54,55]. Model I provides
the general theory for the reaction-transport systems with the
non-Markovian and anomalous switching between moving
phase and quiescent phase.
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APPENDIX

The purpose of this Appendix is to present the derivation
of (i) integral equations for ik(t,r) and nk(t,r), (ii) explicit
expression for ik(t,r) in terms of nk(t,r) [see Eqs. (9) and
(10)]. To derive the balance equations for i1(t,r) and i2(t,r),
we substitute Eqs. (23) and (24) into Eq. (16) and take into
account the initial conditions (14) and formula (25):

i1(t,r) =
∫ t

0
ψ1(τ )i2(t − τ,r − vτ )dτ + n0

1(r − vt)ψ1(t),

(A1)

i2(t,r) =
∫ t

0
ψ2(τ )i1(t − τ,r)e

∫ t

t−τ
f (n(s,r))dsdτ

+ n0
2(r)ψ2(t)e

∫ t

0 f (n(s,r))ds . (A2)

To find the integral equations for n1(t,r) and n2(t,r), we
substitute Eqs. (23) and (24) into Eq. (15) and take into account
the conditions (14),

n1(t,r) =
∫ t

0
i2(t − τ,r − vτ )�1(τ )dτ + n0

1(r − vt)�1(t),

(A3)

n2(t,r) =
∫ t

0
i1(t − τ,r)�2(τ )e

∫ t

t−τ
f (n(s,r))dsdτ

+ n0
2(r)�2(τ )e

∫ t

0 f (n(s,r))ds . (A4)

One way to obtain the nonlinear Master equations for
n1(t,r) and n2(t,r) is to differentiate the densities given by
Eqs. (A3) and (A4) with respect to time t . It turns out that it
is sufficient to find i1(t,r) and i2(t,r) in terms of n1(t,r) and
n2(t,r) and substitute them into Eqs. (7) and (8).

Multiplying Eqs. (A2) and (A4) by e− ∫ t

0 f (n(s,r))ds and taking
the Laplace transform L{f }, we obtain

L
{
i2(t,r)e− ∫ t

0 f (n(s,r))ds
}

= [
n0

2(r) + L
{
i1(t,r)e− ∫ t

0 f (n(s,r))ds
}]

ψ̃2(s),

L
{
n2(t,r)e− ∫ t

0 f (n(s,r))ds
}

= [
n0

2(r) + L
{
i1(t,r)e− ∫ t

0 f (n(s,r))ds
}]

�̃2(s).

Then

L
{
i2(t,r)e− ∫ t

0 f (n(s,r))ds
} = L

{
n2(t,r)e− ∫ t

0 f (n(s,r))ds
} ψ̃2(s)

�̃2(s)
.

(A5)

Using inverse Laplace transform we obtain

i2(t,r)e− ∫ t

0 f (n(s,r))ds =
∫ t

0
I2(t − t ′)n2(t ′,r)e− ∫ t ′

0 f (n(s,r))dsdt ′,

(A6)

where K2(t) is the memory kernel defined by

Ĩ2(s) = ψ̃2(s)

�̃2(s)
.

From Eq. (A6), we get Eq. (10).
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