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Subdiffusion, chemotaxis, and anomalous aggregation
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We propose a nonlinear random walk model which is suitable for the analysis of both chemotaxis and anomalous
subdiffusive transport. We derive the master equations for the population density for the case when the transition
rate for a random walk depends on residence time, chemotactic substance, and population density. We introduce
the anomalous chemotactic sensitivity and find an anomalous aggregation phenomenon. So we suggest a different
explanation of the well-known effect of chemotactic collapse.
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I. INTRODUCTION

Continuous time random walks (CTRW) have been widely
used in many fields including physics, chemistry, and life
sciences (see, for example, reviews [1,2]). Many biological
and physical transport processes exhibit anomalous behavior
for which walker mean-squared displacement increases as a
fractional power μ of time: 〈x2(t)〉 ∼ tμ (subdiffusion: μ < 1;
superdiffusion: μ > 1). The chemotaxis is a directed migration
of cells toward a more favorable environment [3]. The
microscopic theory of the movement of cells or organisms is
also based on the random walk theory (see, for example, [4–7]).
Although chemotaxis has a long history and has been studied
by researchers for many decades, there is a lack of literature
on the connection between the anomalous random walk and
chemotaxis theory. We should mention the recent exception [8]
where biased CTRW has been analyzed. One of the reasons
for this gap is that the chemotaxis is essentially nonhomoge-
neous in space and time random process, while the standard
anomalous CTRW model involves the spatial and temporal
invariance [1,2]. Much of the recent literature on chemo-
taxis has been concerned with the movement of bacteria E.
coli involving the runs and tumbles [5]. The theory is based on
the “velocity-jump” model in which the “run” and “tumble”
time intervals are exponentially distributed [9]. However, it
has been found experimentally [10] that the distribution of run
time intervals might deviate significantly from exponential
approximation. It might have a power law which leads to
anomalous superdiffusive behavior of bacteria.

The main purpose of this paper is to set up the “space-jump”
model for both chemotaxis and non-Markovian random walk,
including subdiffusive transport. In particular, we consider the
phenomenon of cell aggregation by chemotaxis [3,5,11,12].
The aim is to show that the subdiffusive transport might lead
to the anomalous aggregation when all cells aggregate into
a very small region of space. Our model can also be used
in other biological applications such as anomalous search
strategy [13], cancer cell dichotomy [14], subdiffusion in spiny
dendrites [15], invasions through patchy environments [16],
and embryogenesis and wound healing.

II. RESIDENCE TIME STRUCTURED MODEL

We start with a space-jump random walk model in one space
dimension. The cell performs a random walk as follows: it
waits for a random time at each point in space before making a

jump to another point. The most important characteristic of this
walk is the transition rate γ for jumps at point x. The standard
assumption in CTRW theory is that γ depends on the residence
time (age) τ . This is a time interval between two successive
jumps of the cell. The corresponding waiting time density
φ(τ ) is related to γ (τ ) as φ(τ ) = γ (τ ) exp[

∫ τ

0 γ (u)du] [17].
In chemotaxis theory the jump of cells occurs in response to
a chemical signal [5]. For swimming bacteria the transition
rate from the running mode to the tumbling mode is the
functional of the chemotactic substance S(x,t) [6]. This
memory effect reflects the bacterial response to the time history
of chemotactic substance. For the space-jump random walk
model, we assume that the transition rate γ depends on S and
possibly on its spatial and temporal gradient Ṡ. We also assume
that γ depends on the macroscopic population density ρ(x,t).
This dependence describes the crowding effects. Thus

γ (τ |x,t) = γ (τ |S(x,t),Ṡ(x,t),ρ(x,t),t). (1)

We introduce the cell density ξ (x,t,τ ) at position x at time t

with the residence time τ. The main reason for introduction of
the structured density ξ is to make a random walk Markovian.
This idea has been used in [4,17–20]. The density ξ obeys the
balance equation

∂ξ

∂t
+ ∂ξ

∂τ
= −γ (τ |x,t)ξ. (2)

For simplicity we use the initial condition

ξ (x,0,τ ) = ρ0(x)δ(τ ) (3)

for which the residence time of all cells at t = 0 equals 0;
ρ0(x) is the initial density of cells. It is clear that the residence
time τ varies from 0 to t .

Our purpose is to derive the master equation for the cell
density defined as

ρ(x,t) =
∫ t

0
ξ (x,t,τ ) dτ. (4)

The boundary condition for ξ (x,t,τ ) at τ = 0 is

ξ (x,t,0) =
∫ t

0

∫
R

γ (τ |x,t)ξ (x − z,t,τ )w(z|x − z,t) dz dτ.

(5)
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Here w(z|x,t) is the dispersal kernel for jumps z which also
depends on chemotactic substance and its gradient, density
ρ(x,t) and t ,

w(z|x,t) = w(z|S(x,t),Ṡ(x,t),ρ(x,t),t). (6)

It is assumed that w is independent from τ. On the left-hand
side of Eq. (5) we have a density of cells just arriving at point x
at time t (zero residence time). On the right-hand side of
Eq. (5) we have an integration of the rate at which the cells
with different age τ arrive at position x at time t from the
different points x − z. Using the method of characteristics, we
find from Eq. (2) that

ξ (x,t,τ ) = ξ (x,t − τ,0)exp

{
−

∫ t

t−τ

γ [s − (t − τ )|x,s] ds

}
.

(7)

Let us denote the density of cells just arriving at point x at
time t by

j (x,t) = ξ (x,t,0). (8)

We also introduce the density of cells i(x,t) leaving the point x
exactly at time t . We substitute Eq. (7) into Eq. (5), use the
initial condition for ξ (Eq. (3)), and obtain

j (x,t) =
∫
R

i(x − z,t)w(z|x − z,t) dz, (9)

i(x,t) =
∫ t

0
j (x,u)φ(x,t,u) du + ρ0(x)φ(x,t,0), (10)

where

φ(x,t,u) = −∂	(x,t,u)

∂t

= γ (t − u|x,t)exp

[
−

∫ t

u

γ (s − u|x,s) ds

]
. (11)

Here 	(x,t,u) is the probability that a cell is trapped at point x
from time u to t without executing a jump (survival probability)

	(x,t,u) = exp

[
−

∫ t

u

γ (s − u|x,s) ds

]
. (12)

This is an extension of standard survival function for a
nonlinear and nonhomogeneous case when 	 depends on
chemotactic substance S(x,t) and population density ρ(x,t).
The balance equation for ρ(x,t) can be found by the substitu-
tion of Eq. (7) into Eq. (4),

ρ(x,t) =
∫ t

0
j (x,u)	(x,t,u) du + ρ0(x)	(x,t,0). (13)

The system of balance equations (9), (10), and (13) is a
nonlinear generalization of CTRW renewal equations [1,2,20]
and CTRW models for inhomogeneous and nonlinear media
[21,22]. These equations can serve as a starting point for
the analysis of both chemotaxis and anomalous subdiffusive
transport for the space-jump random walk model.

If we differentiate ρ(x,t) in Eq. (13) with respect to time,
we obtain the nonlinear master equation

∂ρ

∂t
=

∫
R

i(x − z,t)w(z|x − z,t) dz − i(x,t). (14)

For a simple linear homogeneous case, when φ and 	 are
independent of x and depend on t − u only, we can obtain
from Eqs. (9), (10), and (13) the classical CTRW equation

ρ =
∫ t

0

∫
R

ρ(x − z,u)φ(t − u)w(z) dz du + ρ0(x)	(t).

(15)

A. Non-Markovian random walk in a stationary field of
chemotactic substance

Now we are in a position to analyze the chemotaxis
and anomalous effects in more detail. First we consider the
case when a cell performs a random walk in a stationary
environment with the distribution of chemotactic substance
S(x). In this case

γ (τ |x,t) = γ1(τ |S(x)). (16)

The survival probability 	 in Eq. (12) must be a function of
τ = t − u and can be written as

	(τ |S(x)) = exp

[
−

∫ τ

0
γ1(u|S(x)) du

]
. (17)

The waiting time probability density function φ(τ |S(x)) =
−∂	(τ |S(x))/∂τ is

φ(τ |S(x)) = γ1(τ |S(x))exp

[
−

∫ τ

0
γ1(u|S(x)) du

]
. (18)

Using the Laplace transform in Eqs. (9), (10), and (13), we
obtain

i(x,t) =
∫ t

0
Kx(t − τ )ρ(x,τ ) dτ. (19)

Here Kx(t) is the memory kernel defined by its Laplace
transform

K̂x(s) = φ̂(s|S(x))

	̂(s|S(x))
, (20)

where s is the Laplace variable. The generalized master
equation is

∂ρ

∂t
= L1ρ, (21)

where the evolution operator L1 can be written as

L1ρ =
∫ t

0

∫
R

Kx−z(t − τ )ρ(x − z,τ )w(z|x − z,t) dz dτ

−
∫ t

0
Kx(t − τ )ρ(x,τ ) dτ. (22)

The case when the dispersal kernel w(z|x,t) depends on
chemotactic substance S has been considered by Langlands
and Henry [8]. It has been pointed out by Erban and Othmer
that the movement of bacteria in a favorable environment is
determined by chemokinesis rather than chemotaxis. In most
cases the bacteria or cells are too small to “feel” a macroscopic
gradient of S [7,11]. That is why it is more important to study
the dependence of transition probability γ on chemotactic
substance S. To illustrate the general theory in what follows
we use only a symmetrical dispersal kernel w(z).
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In a Markovian case, when γ1 does not depend on the
residence time variable τ , we obtain from Eq. (17) that the
survival probability is

	(τ |S(x)) = e−γ1(S(x))τ . (23)

The memory kernel Kx(t) = γ1(S(x))δ(t) and i(x,t) =
γ1(S(x))ρ(x,t). If jump lengths are small, the even kernel w(z)
is a rapidly decaying function for large z. In this case, one can
use the Taylor series in Eq. (22) expanding ρ(x − z,τ ) in z

and truncate the series at the second moment. So under this
diffusion approximation, the master equation (21) takes the
form

∂ρ

∂t
= σ 2

2

∂2

∂x2
[γ1(S(x))ρ(x,t)], (24)

where

σ 2 =
∫
R

z2w(z) dz. (25)

It is well known [5] that this equation can be rewritten as

∂ρ

∂t
+ ∂J

∂x
= 0

with the flux of cells

J = χ
∂S

∂x
ρ − σ 2γ1(S(x))

2

∂ρ

∂x
(26)

and the chemotactic sensitivity

χ (S(x)) = −σ 2

2

∂γ1

∂S
. (27)

When the derivative ∂γ1/∂S is negative, the advection (taxis)
is in the direction of increase in the chemotactic substance.

In the general non-Markovian case, it follows from Eq. (22)
that in the diffusion approximation, cell flux is nonlocal in time

J = −σ 2

2

∂S

∂x

∫ t

0

∂Kx(t − τ )

∂S
ρ(x,τ ) dτ

−σ 2

2

∫ t

0
Kx(t − τ )

∂ρ(x,τ )

∂x
dτ. (28)

Here, instead of the sensitivity χ defined in Eq. (27) we have a
chemotactic memory kernel ∂Kx(t)/∂S. Note that the memory
kernel for the chemotaxis flux is different from the memory
kernel for the diffusion term.

Let us consider the situation when the longer cell survives at
point x, the smaller the transition probability from x becomes.
In this case the rate γ1(τ |S(x)) is a decreasing function of
residence time τ. We assume that

γ1(τ |S(x)) = μ(S(x))
τ0 + τ

,

where τ0 is a parameter with units of time. It follows from
Eq. (17) that the survival function has a power-law dependence

	(τ |S(x)) =
(

τ0

τ0 + τ

)μ(S(x))

,

where the exponent μ depends on the stationary distribution of
chemotactic substance S(x). The corresponding waiting time
density is

φ(τ |S(x)) = −∂	

∂τ
= μ(S(x))/τ0

(1 + τ/τ0)1+μ(S(x))
. (29)

The anomalous subdiffusive case with infinite mean residence
time corresponds to μ(S(x)) < 1 [1,2,20]. The asymptotic
approximation for the Laplace transform of the waiting time
density can be found from the Tauberian theorem [23]

φ̂(s|S(x)) � 1 − gμ(x)sμ(S(x)) (30)

with gμ(x) = �[1 − μ(S(x))]τμ(S(x))
0 as s → 0. Since

	̂(s|S(x)) = [1 − φ̂(s|S(x))]/s, we obtain from Eq. (20) the
Laplace transform of the memory kernel

K̂x(s) � s1−μ(S(x))

gμ(x)
(31)

for s → 0. The cell flux (28) takes the form

J = −σ 2

2

∂S

∂x

∂μ

∂S

∂

∂μ
g−1

μ (x)D1−μ(S(x))
t ρ(x,t)

−σ 2

2
g−1

μ (x)D1−μ(S(x))
t

∂ρ(x,t)

∂x
. (32)

Here we introduce the anomalous chemotactic sensitivity
∂μ/∂S as a derivative of the anomalous exponent μ.D1−μ(S(x))

t

is the Riemann-Liouville fractional derivative:

D1−μ(S(x))
t ρ(x,t) = 1

�[μ(S(x))]
∂

∂t

∫ t

0

ρ(x,u) du

(t − u)1−μ(S(x))
(33)

for 0 < μ(S(x)) < 1 [1,20]. It should be noted that the
fractional derivative of variable order μ(x) has been considered
in [21]. When μ = const, we have a classical subdiffusion
transport equation for which the mean-squared displacement
of cell increases with time as tμ with μ < 1.

B. Anomalous cell aggregation

Let us consider the phenomenon of cell aggregation by
chemotaxis [3,5,11,12]. In a Markovian case, in a finite
domain with zero flux of cells on the boundary, there exists a
stationary nonuniform solution of Eq. (24) [5]. This steady
distribution represents cell aggregation. In the anomalous
case, the system is not ergodic and there is no steady state
distribution. When anomalous chemotactic sensitivity ∂μ/∂S

�= 0, the cells will tend to aggregate where the exponent μ is
small. The anomalous flux (32) leads to

ρ(x,t) → δ(x − xM ) as t → ∞. (34)

Here xM is the point in space where the anomalous exponent
μ(S(x)) has a minimum. It means that all cells aggregate
into a tiny region of space forming a high density system
at the point x = xM . This phenomenon can be referred to
as anomalous aggregation. This behavior has been observed
in experiments on phagotrophic protists when “cells become
immobile in attractive patches, which will then eventually trap
all cells” [11]. Another example of dense aggregation is the
formation of nodules on the roots of nitrogen-fixing plants
that contain the colony of nitrogen-fixing bacteria [3]. Many
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pathogenic species have a tendency to colonize at some loci
(for example, a wound in the skin).

To understand the phenomenon of anomalous aggregation
mathematically, let us consider a coupled map lattice ap-
proximation. We divide a finite space domain [0,l] into an
N subinterval and denote the density in each subinterval i

by ρi .
Thus the density field ρ(x,t) is approximated by the vector

ρ(t) = (ρ1,ρ2, . . . ,ρN ). Now we assume that cells jump on
the right and the left with equal probability 1/2. The transition
rate of the cells is regulated by the local concentration of
chemotactic substance Si, say, by foods [11]. We denote the
corresponding anomalous exponent by μi = μ(Si). Then it
follows from the master equation (21) that the governing
equation for ρ(t) is

dρi

dt
= 1

2

∫ t

0
[Ki−1(t − τ )ρi−1(τ )

+Ki+1(t − τ )ρi+1(τ ) − 2Ki(t − τ )ρi(τ )] dτ (35)

for i = 3, . . . ,N − 2. It should be noted that this equation has
been derived earlier by Chechkin et al. [21]. In the subdiffusive
case, the memory kernel Ki is defined by its Laplace transform:

K̂i(s) � s1−μi

�(1 − μi)τ
μi

0

(36)

for s → 0 [see Eq. (31)]. Since there is no flux of cells outside
the domain [0,l], the lattice master equation (35) should be
modified for the subintervals 1,2 and N − 1,N . For example,

dρ1

dt
= 1

2

∫ t

0
[K2(t − τ )ρ2(τ ) − 2K1(t − τ )ρ1(τ )] dτ. (37)

Let us assume that the maximum food’s concentration is
inside the interval i = M, and, therefore, μM < μi for all
i �= M. If we apply the Laplace transform to Eq. (35) and use
the law of conservation of mass:

∑N
i=1 ρ̂i(s) = 1/s, we obtain

sρ̂i(s) → 0 for i �= M and sρ̂M (s) → 1 as s → 0 or ρM (t) →
1 and ρi(t) → 0 for i �= M as t → ∞. It means that all cells
are trapped inside the subinterval i = M with the maximum
food’s concentration as t → ∞ [see Eq. (34) for the distributed
case]. This result should be valid for high dimensions too.
A similar effect has been discussed in a different context
for a simple two-state system [24] and a composite system
of two separated regions with different anomalous exponents
[21,25]. Sometimes such aggregation is referred to as chemo-
tactic collapse [5]. However, our explanation of this effect is
different from the classical one based on the Patlak-Keller-
Segel (PKS) model [12]. In the PKS theory chemotactic
collapse means the growth of cell density to infinity in finite
time.

C. Markov model with nonlinear transition rate

To prevent the occurrence of delta distribution (34), one
can take into account the crowding effect. We assume that the
transition rate γ depends on the density ρ(x,t) and time t ,
that is,

γ (τ |x,t) = γ2(ρ(x,t),t). (38)

If the transition rate γ is independent of residence time τ,

then the system is Markovian. In this case the density of

cells i(x,t) leaving the point x exactly at time t is i(x,t) =
γ2(ρ(x,t),t)ρ(x,t). The nonlinear evolution equation for ρ is
∂ρ/∂t = L2ρ with the operator L2 :

L2ρ =
∫
R

γ2(ρ(x − z,t),t)ρ(x − z,t)w(z|x − z,t) dz

−γ2(ρ(x,t),t)ρ(x,t). (39)

In a diffusion approximation for the symmetric dispersal kernel
w(z), we obtain

∂ρ

∂t
= σ 2

2

∂2(γ2(ρ,t)ρ)
∂x2

, (40)

where σ 2 is defined in Eq. (25). Note that Eq. (40) can be
rewritten as a classical diffusion equation

∂ρ

∂t
= ∂

∂x

(
D(ρ)

∂ρ

∂x

)
(41)

with the density dependent diffusivity D(ρ) = σ 2

2 ( ∂γ2

∂ρ
+ γ2). If

γ2(ρ,t) is the decreasing function of ρ and ρ∂γ2/∂ρ + γ2 < 0,
D(ρ) becomes negative. The pattern formation due to this
effect has been studied in [26] where a transport operator
similar to L2 has been suggested (see also [27]).

D. Non-Markovian random walk with nonlinear transition rate

Now let us consider the case when the transition rate
γ (τ |x,t) depends on the residence time τ, chemotactic
substance S(x), and the density ρ as follows:

γ (τ |x,t) = γ1(τ |S(x)) + γ2(ρ(x,t),t). (42)

From Eqs. (9), (10), and (13), after lengthy calculations, we
obtain

i(x,t) =
∫ t

0
Kx(t − τ )exp

[
−

∫ t

τ

γ2(ρ(x,s),s) ds

]
ρ(x,τ ) dτ

+ γ2(ρ(x,t),t), (43)

where the memory kernel Kx(t) is defined in Eq. (20). The
nonlocal term in Eq. (43) involves the exponential factor with
γ2(ρ(x,t),t). Although γ1 and γ2 are separable [see Eq. (42)],
the corresponding terms in Eq. (43) are not separable. This
is a non-Markovian memory effect. The generalized master
equation is ∂ρ/∂t = Lρ, where

Lρ =
∫ t

0

∫
R

Kx−z(t − τ )ρ(x − z,τ )

× exp

[
−

∫ t

τ

γ2(ρ(x − z,s),s) ds

]
w(z|x − z,t) dz dτ

−
∫ t

0
Kx(t − τ )ρ(x,τ ). (44)

It follows from here that Lρ �= L1ρ + L2ρ despite the fact
that γ = γ1 + γ2 [see Eq. (42)]. A similar phenomenon related
to chemical reactions has been discussed in [19,20,28]. The
exponential factor with γ2 in Eq. (44) prevents an anomalous
aggregation effect in a long-time limit.
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III. CONCLUSIONS

We introduce a nonlinear CTRW model which is suitable for
the analysis of both chemotaxis and anomalous subdiffusive
transport. We consider the case when the transition rate for
a random walk depends not only on residence time, but also
on chemotactic substance, its derivatives, and macroscopic
population density. We manage to derive the balance equations
for the population density and corresponding nonlinear master
equations. We introduce the concept of anomalous chemotactic
sensitivity as a derivative of the anomalous exponent with
respect to chemotaxis substance. We find the effect of
anomalous aggregation when all bacteria tend to aggregate
at the point where the power-law exponent has a minimum.
So we suggest an explanation of chemotactic collapse which

is different from the classical one based on the PKS model. It
should be noted that we did not explicitly include the power law
for a waiting time distribution. It occurs naturally as a result of
the assumption that the longer the cell survives at point x, the
smaller the transition probability from x becomes. We assume
that the transition probability is inversely proportional to the
large residence time.
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