TEST - 10 March 2008 (9.00-9.50)
Surname \qquad Name: \qquad (please write in BLOCK CAPITALS)

1. The stock price obeys the stochastic differential equation $d S=\mu S d t+\sigma S d W$.
(a) (2 marks) Suppose that the expected return from a stock is 16% per annum and the volatility is 45% per annum. Initial stock price is $\$ 80$. By using $d W \approx X(\Delta t)^{\frac{1}{2}}$, where X is $N(0,1)$, calculate the increase ΔS in the stock price during four days.

Solution:

(b) (3 marks) By using Ito's Lemma $d f=\left(\frac{\partial f}{\partial t}+\mu S \frac{\partial f}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}\right) d t+\sigma S \frac{\partial f}{\partial S} d W$, find the SDE satisfied by $f(t, S)=A t S^{2} \quad(A-$ constant $)$

Solution:
2. Using the put-call parity formula $P-C+S=E \exp (-r T)$
(a) (2 marks) Find a lower bound for the European call option with exercise price $\$ 35$ when the stock price is $\$ 40$, the time to maturity is six months, and the risk-free rate of interest is 5% p.a.;

Solution:

(b) (3 marks) Consider the situation where the European call option is $\$ 5$ which is less than the theoretical minimum. Show that there exists an arbitrage opportunity.

Solution:

3. (4 marks) Draw the payoff diagram of the portfolio: long one share, short one call and short two puts, all with strike price E.

Payoff diagram:

4. (6 marks) Draw the payoff diagram of the portfolio: short 2 shares, long three puts with strike price E_{1} and long four calls with strike price $E_{2}\left(E_{1}<E_{2}\right)$.

Payoff diagram:

