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H I G H L I G H T S

� A microscopic stochastic model for subdiffusion with nonlinear interaction (volume filling and adhesion) is developed.
� Macroscopic governing differential equations are derived which are consistent with the microscopic stochastic model.
� Examples of stationary particle densities are computed which are subject to anomalous aggregation and nonlinear interaction.
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a b s t r a c t

We show how the nonlinear interaction effects ‘volume filling’ and ‘adhesion’ can be incorporated into the
fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random
walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear
governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an
interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the
subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with
fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional
operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables
us to show that volume filling can prevent “anomalous aggregation,” which occurs in subdiffusive systems
with a spatially varying anomalous exponent.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic models for the diffusive motion of biological cells and organisms are well established in the mathematical biology com-
munity. Randomwalk models, stochastic differential equations and their governing nonlinear partial differential equations have been very
successful from a mathematical modelling standpoint. They provide tractable means to incorporate various taxis effects such as the
directed transport along the concentration gradient of external signals (Othmer and Hillen, 2002; Hillen and Painter, 2009; Stevens, 2000),
particle generation and degradation rates which depend on particle concentrations (Murray, 2007; Oelschläger, 1989), density dependent
dispersal rates (Méndez et al., 2012; Murray, 2007), volume exclusion effects (Painter and Hillen, 2002; Simpson and Baker, 2011;
Fernando et al., 2010), and adhesion between particles (Anguige, 2011; Armstrong et al., 2006; Johnston et al., 2012). A defining feature of
most such nonlinear reaction–diffusion-taxis equations is that the macroscopic transport processes involving diffusion and advection are
derived frommicroscopic Markovian randomwalk models; see the excellent review by Stevens and Othmer (1997). However, this does not
fit well with anomalous non-Markovian subdiffusive systems, for which the transport operators are non-local in time and the mean
squared displacement of individual particles grows proportionally to tμ, where 0oμo1 (Metzler and Klafter, 2000). Anomalous transport
occurs microscopically on the level of individual cells, e.g. for the transport of macromolecules within living cells (Golding and Cox, 2006;
Tolić-Nørrelykke et al., 2004; Weiss et al., 2004; Banks and Fradin, 2005). Moreover, it has been found that the motion of individual cells is
anomalously diffusive (Dieterich et al., 2008; Mierke et al., 2011; Fedotov et al., 2013).
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The main mathematical models for subdiffusive dynamics are the Continuous Time Random Walk (CTRW) and fractional Brownian
motion (fBm). Both processes are non-Markovian, unlike Brownian motion. The CTRW appears to be the most popular model for anomalous
dynamics (Metzler and Klafter, 2000), presumably because it admits a tractable PDE formalism (Barkai et al., 2000; Henry et al., 2010).
However, it should be noted that most articles on anomalous transport deal with linear fractional PDEs without particle interactions. Unlike
for Markovian dynamics, it is challenging to incorporate nonlinearities into the subdiffusive PDEs. For instance, even if the particle death rate
is bounded below, by naively adding a degradation term to the PDE one can achieve negative particle concentrations (Henry et al., 2006).
Transport equations for CTRWs with nonlinear reactions have only recently been derived (Mendez et al., 2010; Angstmann et al., 2013). Apart
from an article by one of the authors (Fedotov, 2013), to our knowledge, particle interactions have not yet been incorporated into the CTRW
framework. The challenge is to take into account non-linear effects: volume exclusion (Painter and Hillen, 2002) and adhesion (Anguige,
2011) together with subdiffusive transport.

The main purpose of this article is to systematically derive generic non-Markovian and non-linear integro-differential equations for the
mean concentration of particles such as randomly moving cells or individual organisms. Our aims are: (i) to understand the interaction of
non-Markovian transport and nonlinearities due to volume filling and adhesion effects and (ii) to find the stationary solutions of nonlinear
non-Markovian transport equations that describe aggregation phenomena.

On our way towards goal (i), we give a formalism which connects nonlinearly interacting microscopic CTRWs with nonlinear and non-
Markovian diffusion equations. As it turns out, our formalism also applies to the situation where the anomalous exponent μ, which governs the
trapping behaviour of the CTRW, varies in space (Chechkin et al., 2005). This situation is very significant for biology because it may explain the
widespread phenomenon of anomalous accumulation of bacteria in particular patches. One example is the aggregation of phagotrophic protists
(Fenchel and Blackburn, 1999), where “cells become immobile in attractive patches, which will then eventually trap all cells.” Another example is
the formation of nodules on the roots of nitrogen-fixing plants that contain the colony of nitrogen-fixing bacteria (Wadhams and Armitage, 2004).

It is well known that the movement of bacteria in environments with varying favorability is in the most cases determined by chemokinesis
rather than chemotaxis. The reason for this is that typically the bacteria/cells are too small to sense the macroscopic gradient of a chemotactic
substance S(x) (Erban and Othmer, 2005). Hence a model for the randommotility of microorganisms should take into account the dependence
of the transition probability γ on the nonuniformly distributed concentration S(x), rather than the dependence of a cell's jump direction on the
gradient ∂S=∂x. With this in mind, CTRWs with space-varying anomalous exponent μ arise very naturally as models for chemokinesis: suppose
that μ¼ μðSðxÞÞ is a decreasing function of a favourable substance with concentration S(x). Then the transition probability γ (i.e. the probability
of a jump away from x) equals

γðτ; SðxÞÞ ¼ μðSðxÞÞ
τ0þτ

;

where τ is the residence time and τ0 is a constant (see Eq. (14)). Hence the rate at which a bacterium jumps away from a favourable environment at
x is small, which leads to the phenomenon of anomalous aggregation (Fedotov and Falconer, 2012).

The setup is as follows: In Section 2 we quickly reiterate the derivation of nonlinear Markovian transport equations frommicroscopic stochastic
models. Section 3 contains a quick overview over the anomalous sub-diffusion literature and fractional diffusion equations. In Section 4 we use the
structured density approach and recover Markovian methods for CTRWs; this allows for the derivation of nonlinear differential equations involving
subdiffusion. Finally, in Section 5 we give examples of stationary solutions to nonlinear fractional PDEs that describe the aggregation phenomenon.

2. Markovian transport with nonlinear particle interaction

In this section, we briefly review the standard derivation of nonlinear diffusion equations, starting from a microscopic randomwalk model. For
simplicity, we consider a one dimensional lattice of sites x which are evenly spaced with spacing h. We study the dynamics of the concentration
ρðx; tÞ of particles (e.g. cells and bacteria). We assume that particles perform instantaneous jumps to neighbouring lattice sites. We write T þ ðx; tÞ
and T � ðx; tÞ for the rates of jumps to the right resp. left. Rates are instantaneous and may vary in space x and in time t. The total jump rate is then
Tðx; tÞ≔T þ ðx; tÞþT � ðx; tÞ. The master equation for ρðx; tÞ reads
∂ρðx; tÞ

∂t
¼ T þ ðx�h; tÞρðx�h; tÞþT � ðxþh; tÞρðxþh; tÞ�Tðx; tÞρðx; tÞ: ð1Þ

Transport models for diffusion, chemotaxis, volume filling and adhesion have been studied by Anguige (2011), Anguige and Schmeiser (2009) and
Painter and Hillen (2002). A general model which accommodates all the above effects is given by

T7 ðx; tÞ ¼ λ0ð1�½Sðx7h; tÞ�Sðx; tÞ�Þqðρðx7h; tÞÞaðρðx8h; tÞÞ ð2Þ
Here, λ0 is the rate parameter, and Sðx; tÞ is a spatio-temporally varying external signal (e.g. a chemoattractant or chemorepellent concentration). The
functions qðρÞ and aðρÞ model volume filling and adhesion phenomena; they are decreasing with respect to the concentration density ρðx; tÞ and
map to values in ½0;1�. The volume filling function qðρðx; tÞÞ can be interpreted as the probability that a particle will be accommodated at x, should it
attempt to jump there at time t. With the remaining probability 1�qðρðx; tÞÞ, it will not find enough room at x and hence will not jump. Similarly,
the adhesive effect is modelled with the function aðρðx; tÞÞ: Given that a particle attempts to jump from x to xþh at time t, it succeeds in jumping
there with probability aðρðx�h; tÞÞ. With probability 1�aðρðx�h; tÞÞ, it will stay “glued” to the particles at position x�h and thus not jump.

Eq. (1) governs the evolution of the concentration ρðx; tÞ on the discrete lattice. We perform a Taylor expansion in the lattice spacing h
(see appendix) and consider the spatiotemporal scaling limit:

h↓0; λ0↑1; h2λ0-D0: ð3Þ
The particle concentration is then governed by the nonlinear advection–diffusion equation:

∂ρ
∂t

¼ ∂
∂x

DðρÞ∂ρ
∂x

�ρvðρÞ
� �

ð4Þ
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with diffusion coefficient DðρÞ and drift coefficient vðρÞ given by

DðρÞ ¼D0 aðρÞqðρÞþ3a0ðρÞqðρÞρ�aðρÞq0ðρÞρ½ �

vðρÞ ¼ �2D0aðρÞqðρÞ
∂S
∂x
;

(note that a0ð�Þ and q0ð�Þ are plain derivatives of the functions að�Þ and qð�Þ). Anguige (2011), for instance, studies volume filling and adhesion
phenomena by setting

qðρÞ ¼ 1�ρ; aðρÞ ¼ 1�αρ

with adhesion parameter α40, resulting in

DðρÞ ¼D0 3α ρ�2
3

� �2

þ1�4
3
α

" #
;

vðρÞ ¼ �2D0ð1�αρÞð1�ρÞ∂S
∂x
:

3. Non-Markovian transport

This section is a short overview of fractional subdiffusion transport equations. These equations have been successfully applied to subdiffusive
systems, whose main feature is a mean squared displacement of sublinear growth � tμ where μA ð0;1Þ. This is in stark contrast to systems with
Brownian noise, where mean squared displacement grows linearly. The “standard” fractional diffusion equation governing the particle density
ρðx; tÞ is

∂μρ
∂tμ

¼Dμ
∂2ρ
∂x2

; ρðx;0Þ ¼ ρ0ðxÞ; ð5Þ

where Dμ is a fractional diffusion constant with units length2 /timeμ, and where the Caputo derivative of order μ is defined via

∂μ

∂tμ
f ðtÞ≔

Z t

0
f 0ðt�sÞ s�μ

Γð1�μÞ ds ð6Þ

with Γð�Þ denoting the Gamma function. We note that in the limit μ↑1, the kernel s�μ=Γð1�μÞ converges to the a Dirac delta, and the Caputo
derivative is then the plain derivative of order 1. Similarly to the manner in which the standard diffusion equation with μ¼1 is derived from a
random walk, (5) is derived from a Continuous Time Random Walk (CTRW) (Metzler and Klafter, 2000; Meerschaert and Scheffler, 2004;
Meerschaert and Sikorskii, 2011). Suppose that a particle at the origin at time t¼0 performs a random walk on a one-dimensional lattice, and
suppose that the waiting time W between each jump is distributed according to a power law with tail parameter μAð0;1Þ:

PðW4tÞ � ðt=τ0Þ�μ

Γð1�μÞ ; ðt-1Þ: ð7Þ

Let X(t) denote the random position of the particle at time t, and write pðx; tÞ for its probability density in space x at time t. Introducing the scaling
parameters h for space and τ0 for time, we consider the rescaled position hXðt=τ0Þ. Its probability density is pðx=h; t=τ0Þ=h. Applying the scaling
limit in which both τ0 and h tend to 0 and the ratio h2=ð2τμ0Þ converges

h↓0; τ0↓0;
h2

2τμ0
-Dμ; ð8Þ

this probability density also converges to a probability density Pðx; tÞwhich solves the same equation as (5). If one considers a collection of a large
number of particles with the above dynamics and assumes that the individual trajectories do not interact, then Pðx; tÞ may be replaced by
ρðx; tÞ ¼ CPðx; tÞ, where C denotes the total mass of particles. As (5) is linear, ρðx; tÞ is also a solution. It is common to use this CTRW representation
for Monte-Carlo simulations of solutions of (5) (Meerschaert and Sikorskii, 2011; Zhang et al., 2008).

The above correspondence between CTRWs and fractional PDEs extends to CTRWs with spatial variations, which can be applied to
model chemotaxis problems (Langlands and Henry, 2010). Suppose a collection of particles perform independent CTRWs and respond to
an external force F(x) with a biased jump probability, i.e. a probability 1=2þhFðxÞ to jump right and 1=2�hFðxÞ to jump left. Then a scaling
limit as in (8) yields a concentration ρðx; tÞ which is governed by the fractional Fokker–Planck equation:

∂μρðx; tÞ
∂tμ

¼ ∂2

∂x2
Dμρðx; tÞ
� �� ∂

∂x
DμFðxÞρðx; tÞ
� �

; ρðx;0Þ ¼ ρ0ðxÞ; ð9Þ

Chemotaxis is usually modelled via a bias in the particle jumps which depends on a chemotactic substance with concentration Sðx; tÞ
according to 1=27hχðρ; SÞ∂S=∂x (Hillen and Painter, 2009; Langlands and Henry, 2010). Here the chemotactic sensitivity χðρ; SÞ may be
positive in the case of chemoattraction, or negative in the case of chemorepulsion. This dynamics may be interpreted within the fractional
Fokker–Planck framework by letting the signal Fð�Þ depend on both space and time:

Fðx; tÞ ¼ χðρðx; tÞ; Sðx; tÞÞ∂Sðx; tÞ
∂x

:
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Importantly, however, Eq. (9) only holds for external signals which do not vary with time. The correct generalisation of the fractional
Fokker–Planck equation for time-varying signals F ¼ Fðx; tÞ is
∂ρðx; tÞ

∂t
¼ ∂2

∂x2
DμD1�μ

t ρðx; tÞ
h i

� ∂
∂x

DμFðx; tÞD1�μ
t ρðx; tÞ

h i
;

ρðx;0Þ ¼ ρ0ðxÞ; ð10Þ
(Henry et al., 2010) with order 1�μ Riemann–Liouville fractional derivative:

D1�μ
t f ðtÞ ¼ d

dt

Z t

0
f ðt�sÞs

μ�1

ΓðμÞ ds¼
∂1�μf ðtÞ
∂t1�μ

þ f ð0Þt
μ�1

ΓðμÞ:

A further avenue of introducing spatial variations into fractional transport is by letting the anomalous parameter vary in space, μ¼ μðxÞ,
see e.g. Chechkin et al. (2005). Eq. (7) then becomes

PðW4tÞ � ðt=τ0ðxÞÞ�μðxÞ

Γð1�μðxÞÞ ; ðt-1Þ

(Fedotov and Falconer, 2012). For small h and τ0, the dynamics of the particle density ρðx; tÞ can be approximated by

∂ρðx; tÞ
∂t

¼ ∂2

∂x2
DμðxÞD1�μðxÞ

t ρðx; tÞ
h i

� ∂
∂x

DμðxÞFðx; tÞD1�μðxÞ
t ρðx; tÞ

h i
;

ρðx;0Þ ¼ ρ0ðxÞ ð11Þ
where

DμðxÞ ¼ h2

2τμ0ðxÞ
:

Finally, we remark that many articles study “Caputo forms” of (10) and (11), which are obtained by simply substituting Fðx; tÞ for F(x)
and μðxÞ for μ in (9). Such equations are not linked to (Continuous Time) Random Walk models, and hence do not have any physical
interpretation. The authors deem it unlikely that a Caputo form of a transport equation like (9) can be derived from a chemotaxis model on
the lattice and strongly advocate the use of the Riemann–Liouville type equations (10) and (11).

4. Non-Markovian transport with nonlinear interaction

This section contains the main results of our paper. We derive nonlinear fractional equations involving subdiffusion, volume filling and
adhesion effects. CTRWs whose waiting times between jumps are not exponentially distributed do not satisfy the Markov property. However, they
are semi-Markov processes (Meerschaert and Straka, 2014) (or generalised renewal processes), meaning that the Markov property applies at the
random times at which a jump occurs. As a consequence, at any time t the law of the future trajectory of a particle depends only on its position x at
time t and the residence time τ, i.e. the time which has elapsed since the last jump. In mathematical terms, the dynamics are Markovian on the
state space ðx; τÞAR� ½0;1Þ.

As in Vlad and Ross (2002), Mendez et al. (2010), we introduce the structured density ξðx; τ; tÞ of particles at position x at time t whose
residence time equals τ. Then the cell density ρðx; tÞ is recovered from the structured density via simple integration:

ρðx; tÞ ¼
Z 1

0
ξðx; τ; tÞ dτ ð12Þ

As most other paper in the field, we assume the initial condition ξðx; τ;0Þ ¼ ρ0ðxÞδðτÞ at time t¼0. In this case, at time t no residence time
can exceed the value t, and it suffices to integrate over the domain ½0; t�.

The structured density dynamics of a single particle are as follows: the residence time τ increases linearly with time t at the rate 1, until the
particle escapes the site x. Upon escape, τ is reset to 0. In this paper, we assume that the rate at which a particle escapes from a site x depends on
two effects. Firstly, it depends on the (external) environment at x and neighbouring sites at time t, and secondly on its (internal) residence time
τ at x, which reflects a memory effect typical for CTRWs. The external effect is comprised in the escape rate αðx; tÞ, which may be a function e.g.
of the particle density ρ at x and neighbouring sites, and thus may account for volume-exclusion and/or adhesion effects. Additionally, it may be
a function of the density Sðx; tÞ of a nearby chemically signalling substance (see below). The internal effect, on the other hand, is comprised in
the escape rate γðx; τÞ. For CTRWs, one typically assumes a waiting time distribution with density ψ ðx; τÞ for the times between jumps, with tail
function Ψ ðx; τÞ ¼ R1

τ ψðx; τ0Þ dτ0. Then
γðx; τÞ ¼ ψðx; τÞ=Ψ ðx; τÞ ð13Þ
holds (Fedotov and Falconer, 2012). A subdiffusive trapping effect at x occurs when γðx; τÞ is a decreasing function in τ. For instance, a Pareto
distribution Ψ ðx; τÞ ¼ ð1þτ=τ0Þ�β with characteristic time scale τ0 and tail parameter μAð0;1Þ yields
γðx; τÞ ¼ μ=ðτ0þτÞ; ð14Þ
For the exponential distribution Ψ ðx; τÞ ¼ expð�t=τ0Þ, one has γðx; τÞ ¼ 1=τ0, independent of τ, reflecting the typical lack of memory.

For tractability, we assume that the internal and external effects are independent. This means that the escape rates add up to a total
escape rate αðx; tÞþγðx; τÞ. The probability of an escape in the infinitesimal time interval ðt; tþdtÞ is then αðx; tÞ dtþγðx; τÞ dt. Now the
dynamics of the structured density ξðx; τ; tÞ can be seen to satisfy the equation:

∂
∂t
ξðx; τ; tÞ ¼ � ∂

∂τ
ξðx; τ; tÞ�½αðx; tÞþγðx; τÞ�ξðx; τ; tÞ; t40; τ40; ð15Þ

which describes the linear increase of the residence time and the decay in the structured particle density due to particle escapes.
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Upon escape from x, the residence time τ is reset to 0, and the particle is placed back onto the lattice as follows: It jumps to the
neighbouring left resp. right lattice site with probability L resp. R, or it does not jump with probability C. We assume LþRþC¼1. Moreover,
the probabilities L and R (and hence C) only depend on external cues at x at time t, and not on the internal residence time τ at the time of
the jump: L¼ Lðx; tÞ, R¼ Rðx; tÞ. We incorporate volume filling, adhesion and chemotactic drift into Lðx; tÞ and Rðx; tÞ via

Lðx; tÞ ¼ qðρðx�h; tÞÞaðρðxþh; tÞÞ 1
2
�SðxþhÞ�Sðx�hÞ

4

� �

Rðx; tÞ ¼ qðρðxþh; tÞÞaðρðx�h; tÞÞ 1
2
þSðxþhÞ�Sðx�hÞ

4

� �
;

Cðx; tÞ ¼ 1�Lðx; tÞ�Rðx; tÞ:

Here the functions qðρÞ, aðρÞ and S(x) play the same roles (volume filling, adhesion and external signal) as described in (2). One can check
that L;R and C are all probabilities, i.e. lie in the interval ½0;1�. Other choices for the impact of S(x) on Lðx; tÞ and Rðx; tÞ are conceivable, as in
our derivation below we only assume that the bias equals 17hS0ðx; tÞþOðh3Þ

h i
=2. However the choice of terms ½1þSðx7hÞ�SðxÞ�=2 is not

suitable, since we do not allow Lðx; tÞþRðx; tÞ41.
The probabilities L, R and C thus define a dispersal kernel

wðx; t; zÞ ¼ Lðx; tÞδðzþhÞþRðx; tÞδðz�hÞþCðx; tÞδðzÞ;
which is the probability distribution of a jump zAf�h; þh;0g given that the jump occurs at time t with base point x. If all particles with
density ρðx; tÞ are displaced according to wðx; t; zÞ, this results in the density

Wρðx; tÞ≔
Z
zAR

ρðx�z; tÞwðx�z; t; zÞ dz

¼ Rðx�h; tÞρðx�h; tÞþLðxþh; tÞρðxþh; tÞþCðx; tÞρðx; tÞ:

The total escape flux from site x at time t is

iðx; tÞ≔
Z 1

0
½αðx; tÞþγðx; τÞ�ξðx; t; τÞ dτ

¼ αðx; tÞρðx; tÞþ
Z 1

0
γðx; τÞξðx; t; τÞ dτ: ð16Þ

Since all jumps are of nearest neighbor type, the quantity

J xþh
2
; t

� �
≔Rðx; tÞiðx; tÞh�Lðxþh; tÞiðxþh; tÞh

is readily interpreted as the net flux of particles from lattice point x to lattice point xþh. Moreover, one confirms that

h�1 J xþh
2
; t

� �
� J x�h

2
; t

� �� �
¼ �Wiðx; tÞþ iðx; tÞ: ð17Þ

By definition of Jðx; tÞ and conservation of mass, the above left-hand side equals �∂ρðx; tÞ=∂t. Assuming that the right-hand side admits a
valid Taylor expansion in the x-variable, we can write

∂ρðx; tÞ
∂t

¼ h2Aiðx; tÞþOðh3Þ; ð18Þ

where A is the transport operator

Ai¼ 1
2
∂
∂x

aðρÞqðρÞ ∂
∂x
iþ i

3
aðρÞ

∂aðρÞ
∂x

� 1
qðρÞ

∂qðρÞ
∂x

�2
∂S
∂x

� �� �� �

¼ 1
2
∂
∂x

aðρÞqðρÞ ∂
∂x
iþ i

∂
∂x

log
aðρÞ3
qðρÞ �2S

 !" #" #
ð19Þ

acting on the x-variable only (see Appendix). Recall the conservation of mass equation ∂ρ=∂tþ∂J=∂x¼ 0; the above equation then allows for an
interpretation of the flux Jðx; tÞ as the decomposition into four components: (i) the local gradient of the escape rate i(x), (ii) adhesion effects due to
aðρÞ, (iii) crowding effects due to qðρÞ and (iv) the external signal Sðx; tÞ. Eq. (19) will serve as the starting point for non-linear transport equations,
of both Markovian and time-fractional type, as we show in the following two examples (it remains to express iðx; tÞ in terms of ρðx; tÞ).

4.1. Markovian nonlinear transport equations

If the residence time based escape rate γðx; τÞ vanishes and if αðx; tÞ ¼ 2λ0, (16) reads

iðx; tÞ ¼ 2λ0ρðx; tÞ: ð20Þ
Now applying the diffusive scaling limit (3), we reproduce the standard Markovian transport equation (4). In particular, the flux equals

Jðx; tÞ ¼ �D0aðρÞqðρÞ
∂ρ
∂x

þρ
∂
∂x

log
aðρÞ3
qðρÞ �2S

 !" #
;

where D0 ¼ h2λ0:
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4.2. Fractional nonlinear transport equations

Suppose now that αðx; tÞ vanishes and that the residence time based escape rate is given by (13), where

Ψ ðx; τÞ ¼ Eμ �ðt=τ0Þμ
� �

and Eμ denotes the Mittag–Leffler function (also see Table 1). Then one has

iðx; tÞ ¼ τ�μ
0 D1�μ

t ρðx; tÞ ð21Þ

(Fedotov and Falconer, 2012, Eq. (30)). Applying the anomalous scaling limit (8), the anomalous transport equation then equals

∂ρðx; tÞ
∂t

¼ ∂
∂x

DμaðρÞqðρÞ
∂
∂x

D1�μ
t ρ

� 	
þ D1�μ

t ρ
� 	 ∂

∂x
log

aðρÞ3
qðρÞ �2S

 !" #" #
;

ρðx;0Þ ¼ ρ0ðxÞ;

with general adhesion and volume filling effects aðρðx; tÞÞ and qðρðx; tÞÞ, external signal Sðx; tÞ and anomalous diffusion coefficient
Dμ ¼ h2=2τμ0. For instance, setting qðρÞ � 1 (no volume filling effect) and aðρÞ ¼ 1�mρ with adhesion parameter m yields the fractional
adhesion–diffusion equation:

∂ρ
∂t

¼ ∂
∂x

Dμð1�mρÞ ∂
∂x

D1�μ
t ρ

� 	
þ D1�μ

t ρ
� 	 ∂

∂x
3log ð1�mρÞ�2Sð Þ

� �� �
;

ρðx;0Þ ¼ ρ0ðxÞ:

4.3. Nonlinear transport equations with general memory effects

In the remainder of this section, we derive transport equations as (20) and (21) in the case where internal and external effects γðx; τÞ and
αðx; tÞ coexist. This will provide models in which intermediate-time asymptotics are subdiffusive, and long-time asymptotics are diffusive, see
below. We begin by solving the PDE (15). For abbreviation, we introduce the dimensionless functions:

Ψ ðx; tÞ ¼ exp �
Z t

0
γðx; sÞ ds

� �
; Φðx; tÞ ¼ exp �

Z t

0
αðx; sÞ ds

� �

which take values in ð0;1�. They may be interpreted as the probability that in the time interval ½0; t� a particle has not escaped from x due to an
internal (resp. external) effect. (Note that the above is consistent with (13).) Assuming independence of the two effects, the probability that a
particle does not jump in the time interval ½0; t� is then Ψ ðx; tÞΦðx; tÞ. We also note that

ψðx; tÞ≔� ∂
∂t
Ψ ðx; tÞ ¼ γðx; tÞΨ ðx; tÞ; t40

is a probability density. We write

jðx; tÞ≔ξðx;0; tÞ ð22Þ
for the flux of particles arriving at x. A heuristic explanation for this interpretation is as follows: The collection of particles at x at time t whose
residence time lies in the interval ð0; εÞ have arrived there during the time interval ðt�ε; tÞ and they have not escaped during this interval. This
balance equation readsZ ε

0
ξðx; τ; tÞ dτ¼

Z t

t� ε
jðx; sÞ 1�

Z t

s
αðx; rÞ dr�

Z t

s
γðx; r�sÞ drþoðεÞ

� �
ds:

Now if we divide by ε and let ε↓0 we arrive at (22).
For simplicity, we assume that the initial structured density equals ξðx; τ;0Þ ¼ ρ0ðxÞδðτÞ, i.e. at time 0 all particles have residence time

0 and their spatial distribution is ρ0ðxÞ. Then we find via the method of characteristics (see appendix)

ξðx; τ; tÞ ¼ Ψ ðx; τÞ Φðx; tÞ
Φðx; t�τÞ jðx; t�τÞþ Ψ ðx; τÞ

Ψ ðx; τ�tÞΦðx; tÞρ0ðxÞδðτ�tÞ: ð23Þ

Table 1
Waiting time distributions and their corresponding renewal measure densities. The Mittag–Leffler density assumes 0oμo1 and decays as t-1, according to a power-law

pt�1�μ . The renewal measure density for the mixture of exponentials is mEðtÞ ¼ b1b2=b1a2þb2a1þððb1�b2Þ2a1a2Þ=b1a2þb2a1 � e�ðb1a2 þb2a1 Þt (Asmussen, 2003, Problem
III.5.2).

ψðtÞ ψ̂ ðλÞ mðtÞ

Exponential τ�1
0 expð�t=τ0Þ ð1þτ0λÞ�1 1=τ0

Mittag–Leffler � ∂
∂t

Eμ � t
τ0

� �μ� �
1

1þðτ0λÞμ
tμ�1τ�μ

0 =ΓðμÞ

Gamma texpð� t=τ0Þ
τ�2
0

ð1þτ0λÞ�2 1�expð�2t=τ0Þ
2τ0

Mixed exp. a1e�b1 tþa2e�b2 t a1
c1þλ

þ a2
c2þλ

mEðtÞ
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Substituting this into (12) and (16) gives the equation pair

ρðx; tÞ ¼
Z t

0
Ψ ðx; τÞ Φðx; tÞ

Φðx; t�τÞjðx; t�τÞ dτþΨ ðx; tÞΦðx; tÞρ0ðxÞ

iðx; tÞ ¼ αðx; tÞρðx; tÞ

þ
Z t

0
ψðx; τÞ Φðx; tÞ

Φðx; t�τÞjðx; t�τÞ dτþψ ðx; tÞΦðx; tÞρ0ðxÞ:

We rewrite this in convenient shorthand notation:

ρ

Φ
¼ Ψnt

j
Φ
þΨρ0 ð24Þ

i
Φ
¼ αρ

Φ
þψnt

j
Φ
þψρ0 ð25Þ

The symbol nt denotes a convolution in the time-variable t (but not in the space variable x). In order to derive an analytic form for the
escape rate iðx; tÞ, we introduce the function mðx; tÞ, defined via its Laplace transform in t as

m̂ðx; λÞ ¼
Z 1

0
e� λtmðx; tÞ dt ¼ ψ̂ ðx; λÞ

1� ψ̂ ðx; λÞ ð26Þ

for any fixed x. This function is well-known in renewal theory as the renewal measure density1 associated with the probability density
t↦ψ ðx; tÞ (Feller, 1966). Its interpretation is that

R b
a mðx; tÞ dt equals the expected number of events (renewals) in the time interval ða; b�,

where the inter-arrival time of events is i.i.d. distributed with density t↦ψðx; tÞ. Two generic cases appear: if ψðx; tÞ has finite first moment
μ1≔

R1
0 tψðx; tÞ dt, then for large times the rate of jumps evens out and approaches the value 1=μ1. In the case of a diverging first moment,

i.e. μ1 ¼1, very long waiting times tend to occur, which means that for very late times the rate of jumps decays to 0. Four examples are
collected in Table 1. Now we can use Laplace transforms and the convolution formula to show that (24) is equivalent to

∂
∂t

mnt
ρ

Φ

� 	
¼ ψnt

j
Φ
þψρ0: ð27Þ

Indeed, the Laplace transform of (24) is

ρ

Φ

� 	4
¼ Ψ̂

j
Φ

� �4
þ Ψ̂ ρ0

whereas the Laplace transform of (27) is

λm̂
ρ

Φ

� 	
t
¼ ψ̂

j
Φ

� �
t
þ ψ̂ ρ0;

and the latter two equations are seen to be equivalent due to (26) and 1�λΨ̂ ¼ ψ̂ .
Using (25) then gives the result

i¼ αρþΦ
∂
∂t

ρ

Φ
ntm

� 	
or, in detailed notation,

iðx; tÞ ¼ αðx; tÞρðx; tÞþΦðx; tÞ ∂
∂t

Z t

0

ρðx; sÞ
Φðx; sÞmðt�sÞ ds; ð28Þ

where Φðx; tÞ ¼ exp � R t0 αðx; sÞ ds� 	
.

The generalised Master equation takes the form:

∂ρðx; tÞ
∂t

¼ h2

2
∂
∂x

aðρÞqðρÞ ∂i
∂x

þ i
3

aðρÞ
∂aðρÞ
∂x

� 1
qðρÞ

∂qðρÞ
∂x

�2
∂S
∂x

� �� �� �
þOðh3Þ;

where as above aðρðx; tÞÞ describes the adhesion effect, qðρðx; tÞÞ describes the volume filling effect and Sðx; tÞ is an external signal. Let us
consider a few examples illustrating the above equation. If we set qðρÞ � 1 (no volume filling effect), S¼0 and aðρÞ ¼ 1�mρ with adhesion
parameter m, this yields the following master equation:

∂ρðx; tÞ
∂t

¼ h2

2
∂
∂x

ð1�mρÞ ∂i
∂x

� i
3m

1�mρ

∂ρ
∂x

� �� �� �
þOðh3Þ

with

iðx; tÞ ¼ αðx; tÞρðx; tÞþe�
R t

0
αðx;sÞ ds ∂

∂t

Z t

0
e
R s

0
αðx;uÞ duρðx; sÞmðt�sÞ ds:

In the anomalous case, when the renewal measure density is

mðtÞ ¼ tμðxÞ�1τ�μðxÞ
0 =ΓðμðxÞÞ;

1 Although the renewal measure has an atom (singularity) at 0, the renewal measure density t↦mðx; tÞ does not have a delta function term at 0.
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we can rewrite the last expression for the total escape rate i in terms of the fractional derivative D1�μðxÞ
t :

iðx; tÞ ¼ αðx; tÞρðx; tÞþτ�μðxÞ
0 e�

R t

0
αðx;sÞ ds D1�μðxÞ

t e
R t

0
αðx;uÞ duρðx; tÞ

� �
: ð29Þ

Eq. (29) is the sought generalisation of Eqs. (20) and (21). The Markovian situation (20) may be recovered by setting α¼ 2λ0 and γ ¼ 0,
or equivalently by setting α¼ 0 and γ ¼ 2λ0. The fractional situation (21) results if α¼ 0 and if γðx; τÞ is as in (13), where ψðx; τÞ at scale τ0 is
Mittag–Leffler (see Table 1).

Assume now the fractional situation as above, with the modification that αðx; tÞ be non-zero, finite and independent of the time scale τ0.
Taking the subdiffusive scaling limit (8) in Eq. (18) together with ατ051 results in the subdiffusive fractional evolution equation:

∂ρðx; tÞ
∂t

¼ 2A DμðxÞΦðx; tÞD1�μðxÞ
t

ρðx; tÞ
Φðx; tÞ

� �
ð30Þ

where the transport operator A is defined in (19). One can write this equation in the form:

∂ρðx; tÞ
∂t

¼ ∂
∂x

DμðxÞaðρÞqðρÞ
∂
∂x

Φðx; tÞD1�μðxÞ
t

ρðx; tÞ
Φðx; tÞ

� �
 �

þ ∂
∂x

DμðxÞaðρÞqðρÞ Φðx; tÞD1�μ
t

ρðx; tÞ
Φðx; tÞ

� �
3

aðρÞ
∂aðρÞ
∂x

� 1
qðρÞ

∂qðρÞ
∂x

�2
∂S
∂x

� �
 �

We note however that the PDE for the stationary solution has a much simpler form (32).

5. Aggregation phenomena in nonlinear subdiffusive systems

The purpose of this section is to analyse aggregation phenomena in subdiffusive systems, which appear to be particularly intricate. Fedotov
and Falconer (2012) have shown that a simple spatial variation in the anomalous exponent μ (i.e. the power law exponent of the waiting times)
can cause the stationary profile to collapse, with all particles very slowly aggregating at the one point where μ attains its minimum. In a physical
system, the particle count at any location will of course remain bounded if particles have positive volumes, and such behaviour would be
deemed unphysical. With the developed theory, this “volume exclusion effect” can be taken into account for subdiffusive aggregation.

5.1. Stationary structured density

We look for necessary conditions for the structured density to yield a stationary state. We assume that t↦ξðx; τ; tÞ is constant for every ðx; τÞ; in
this case the dependence on t can be dropped, and we write ξstðx; τÞ for the stationary structured density. It follows that the density ρ and escape
flux i from (12) and (16) are also stationary, and similarly we define ρstðxÞ and ist(x). Further assuming that αðx; tÞ ¼ αðxÞ does not depend on t, Eq.
(15) may now be reinterpreted as

∂
∂τ
ξstðx; τÞ ¼ �½αðxÞþγðx; τÞ�ξstðx; τÞ;

with solution

ξstðx; τÞ ¼ ξstðx;0Þ expð�τ½αðxÞ�ÞΨ ðx; τÞ: ð31Þ
At equilibrium, the net flux Jðx; tÞ vanishes identically. Eqs. (22) and (17) then imply ξstðx;0Þ ¼ jstðxÞ ¼WistðxÞ ¼ istðxÞ, and hence

ξstðx; τÞ ¼ istðxÞ expð�τ½αðxÞ�ÞΨ ðx; τÞ:
and integration over τA ð0;1Þ yields
ρstðxÞ ¼ istðxÞΨ̂ ðx; αðxÞÞ
where λ↦Ψ̂ ðx; λÞ denotes the Laplace transform of τ↦Ψ ðx; τÞ. We note that Ψ ðx; αðxÞÞ equals the expected value of the random “waiting time” T
whose tail function PðT4τÞ equals Ψ ðx; τÞe� ταðxÞ. This is a kind of exponential tempering with tempering parameter αðxÞ, a modification which
ensures that all moments of a randomwaiting time are finite. This is similar, but not identical to the tempering studied e.g. by Meerschaert et al.
(2008) and Stanislavsky et al. (2008), where the factor e� ταðxÞ is applied to ψðx; τÞ (and not Ψ ðx; τÞ). Finally, according to (17), equilibrium holds if

W ρstðxÞ
Ψ̂ ðx; αðxÞÞ

� �
� ρstðxÞ
Ψ̂ ðx; αðxÞÞ ¼ 0;

which in the continuum limit becomes the aggregation equation:

A ρstðxÞ
Ψ̂ ðx; αðxÞÞ

� �
¼ 0; ð32Þ

where the nonlinear transport operator A is defined in (19). This equation is one of the main results of this paper. One can also write

∂
∂x

aðρstÞqðρstÞ
∂
∂x

ρstðxÞ
Ψ̂ ðx; αðxÞÞ

� �
þ ρstðxÞ

Ψ̂ ðx; αðxÞÞ

� �
∂
∂x

log
aðρstÞ3
qðρstÞ

þ2S

 !" #" #
¼ 0:

Apart from the transport operator A the stationary equation (32) involves a very important function Ψ̂ ðx; αðxÞÞ. Since

Ψ̂ ðx; λÞ ¼ 1� ψ̂ ðx; λÞ
λ

;
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for the anomalous subdiffusive case with

ψ̂ ðx; λÞ ¼ 1
1þ τ0λð ÞμðxÞ;

we obtain

ρstðxÞ
Ψ̂ ðx; αðxÞÞ ¼ αðxÞρstðxÞþ

αðxÞρstðxÞ
τ0αðxÞð ÞμðxÞ: ð33Þ

When τ0αðxÞ is small, the second term becomes dominant and determines the stationary profile ρstðxÞ as a solution of the equation:

A αðxÞρstðxÞ
τ0αðxÞð ÞμðxÞ

� �
¼ 0: ð34Þ

We should note that Eq. (32) for the stationary distribution ρstðxÞ cannot be obtained by simply equating the RHS of the non-stationary master
equation:

∂ρðx; tÞ
∂t

¼ h2A αðxÞρðx; tÞþe�αðxÞt ∂
∂t

Z t

0
eαðxÞsρðx; sÞmðt�sÞ ds

� �

to 0.
Let us illustrate our general results by considering how nonlinear volume filling effects interact with tempered anomalous aggregation.

On the unit interval xA 0;1½ �, we find the stationary solutions to Eq. (32) supposing that the anomalous exponent is distributed as
μðxÞ ¼ 0:7þ0:2x, that the external signal equals SðxÞ ¼ 2x and that volume filling and adhesion effects are absent. In the fractional case
(α¼0, see (21)), it is known that in the long time limit all particles accumulate at the minimum point of the anomalous exponent μðxÞ,
independently of the initial configuration of the system (Fedotov and Falconer, 2012). That is, the stationary density is singular, and in our
case equals the delta function δðxÞ at 0. We illustrate this “anomalous aggregation phenomenon” again in Fig. 1, but in a different way: We
first find the stationary solution ρstðxÞ in the intermediate case (29) with α40, which interpolates between fractional and Markovian
dynamics. We then let the parameter α tend to 0, which means that ρstðxÞ will approximate the stationary solution in the fractional case.
(It should be noted that although the stationary distributions seemingly converge as α↓0, the case α¼0 is inherently different from the
case α40, because the stationary structured density ξstðx; τÞ (31) only exists in the latter case.)

We compute ρstðxÞ in the intermediate case by solving (32) with a nonlinear differential equation solver using Mathematica (see
Appendix C). We do this for shrinking values of the parameter α and indeed observe that ρstðxÞ approaches, albeit slowly, the delta
function; see Fig. 1. This occurs in spite of an external signal SðxÞ ¼ 2x which pushes the particles towards the right. We hence claim that
anomalous aggregation is stronger than any (bounded) external signal S(x).
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7
st x

Fig. 1. Aggregation of subdiffusive cells, with μðxÞ ¼ 0:7þ0:2x, SðxÞ ¼ 2x, αðρÞ ¼ 1 and qðρÞ ¼ 1. As α↓0, the dynamics approach fractional dynamics.
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Fig. 2. A system identical to Fig. 1, except with a nonlinear volume filling effect qðρÞ ¼ 1�0:2ρ. Anomalous aggregation is now visibly limited.
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In Fig. 2 we consider the same system, but with a volume filling effect qðρÞ ¼ 1�0:2ρ. Again, as α↓0, the stationary solutions seem to
converge. The limiting ρstðxÞ however stays bounded below 5 as qð5Þ ¼ 0. We hence claim that nonlinear volume filling effects may
effectively limit anomalous aggregation.

6. Conclusions

The main challenge of this paper has been to implement nonlinear effects such as volume filling and adhesion into fractional subdiffusive
transport. Starting with microscopic random walk models, we have derived non-Markovian and nonlinear master equations for the mean
concentration of random walkers (cells, bacteria, etc.). We have taken into account anomalous trapping, non-stationary tempering and
nonlinear reactions together with nonlinear volume filling and adhesion effects. We have shown that in the subdiffusive case these equations
involve a nontrivial combination of the nonlinear terms together with fractional derivatives. The main point is that these equations cannot be
easily written phenomenologically. This is due to non-Markovian character of transport process involving anomalous trapping together with
tempering. It turns out that in the long time limit these equations take a relatively simple form without fractional time derivatives which
allows to find the stationary solutions and thereby to study aggregation phenomena. We have shown that nonlinear volume filling effects
limit anomalous aggregation in subdiffusive transport systems with spatially nonuniform anomalous exponent.
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Appendix A. Taylor expansions

For the Taylor expansion of (1) we use the following mathematica input:

This yields the output

3ρqðρÞρ0a0ðρÞ�ρaðρÞρ0q0ðρÞþ2ρaðρÞqðρÞS0 þaðρÞqðρÞρ0 ðA:1Þ
from which we read off (4).

For the Taylor expansion of the right-hand side of (17), we use

which yields the output

iðxÞ 3ρ0ðxÞa0ðρðxÞÞ
aðρðxÞÞ �ρ0ðxÞq0ðρðxÞÞ

qðρðxÞÞ �2S0ðxÞ
� �

þ i0ðxÞ

and we can read off (19).
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Appendix B. The method of characteristics

We transform the PDE (15) on the domain xAR, t40, τ40 into an ODE along the characteristics

uðsÞ ¼ ðx; τ; tÞ�sð0;1;1Þ; sA ½0; min fτ; tg�
We write ξτ and ξt for the partial derivatives of ξðτ; tÞ with respect to the first resp. second argument, and find

d
ds
ξðuðsÞÞ ¼ �ξτðuðsÞÞ�ξtðuðsÞÞ ¼ ½αðuðsÞÞþγðuðsÞÞ�ξðuðsÞÞ

where by slight abuse of notation we let αðx; τ; tÞ≔αðx; tÞ and γðx; τ; tÞ≔γðx; τÞ. This solves to

ξðuðsÞÞ ¼ C exp
Z s

0
½αðuðyÞÞþγðuðyÞÞ� dy

� �

and setting s¼ 0 yields the constant C ¼ ξðx; τ; tÞ. If τrt, then

ξðx;0; t�τÞ ¼ ξðuðτÞÞ ¼ ξðx; τ; tÞ exp
Z τ

0
½αðx; t�yÞþγðx; τ�yÞ� dy

� �
;

and if τZt, then

ξðx; τ�t;0Þ ¼ ξðuðtÞÞ ¼ ξðx; τ; tÞ exp
Z t

0
½αðx; t�yÞþγðx; τ�yÞ� dy

� �
:

A change of integration variable together with the definition variable together with the definition of Φðx; tÞ and Ψ ðx; τÞ then yields (23).

Appendix C. Stationary distributions

The following Mathematica code generates Fig. 1:
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note that the Laplace transformed Mittag Leffler function MLtailL is chosen according to Eq. (28) in Fedotov and Falconer (2012):

Ψ̂ ðx; sÞ ¼ sμðxÞ�1

τðxÞ�μðxÞ þsμðxÞ

If Line 4 of the code is replaced by

then the volume filling effect is set to carrying capacity 5¼1/0.2, and Fig. 2 results.
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