Calculus and Vectors B - MATH10131

Problem Sheet for Week 9

Integration \& Vectors

Suggested reading: 'Stewart' Chapters 12 and 13

Easy Questions

1. Use vectors to find the three angles of each of the triangles with vertices at
(a) $\overrightarrow{\mathbf{0}}=(0,0,0), \quad \overrightarrow{\mathbf{A}}=(0,0,5) \quad$ and $\quad \overrightarrow{\mathbf{B}}=(4,-3,0)$
(b) $\quad \overrightarrow{\mathbf{A}}=(0,1,-1), \quad \overrightarrow{\mathbf{B}}=(1,-1,0) \quad$ and $\quad \overrightarrow{\mathbf{C}}=(-1,0,1)$

Note: if you can't find the angle without using a calculator, leave your answer in the form: $\cos ^{-1}$.
Hint: Note that in using $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$ to find the angle 'between' the vectors, both vectors should either end at the same point or begin at the same point.
2. Find the areas of each of the triangles with vertices at
(a) $\quad \overrightarrow{\mathbf{A}}=(2,7,1), \quad \overrightarrow{\mathbf{B}}=(2,8,0) \quad$ and $\quad \overrightarrow{\mathbf{C}}=(3,6,1)$
(b) $\quad \overrightarrow{\mathbf{A}}=(1,-1,0), \quad \overrightarrow{\mathbf{B}}=(2,-2,1) \quad$ and $\quad \overrightarrow{\mathbf{C}}=(-3,0,4)$
(c) $\quad \overrightarrow{\mathbf{A}}=(0,1,0), \quad \overrightarrow{\mathbf{B}}=(-1,0,1) \quad$ and $\quad \overrightarrow{\mathbf{C}}=(2,3,-1)$

Hint: Area of triangle ABC is $\frac{1}{2}$ base \times height $=\frac{1}{2}|\overrightarrow{\mathbf{A B}}||\overrightarrow{\mathbf{A C}}| \sin \alpha=\frac{1}{2}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|$ where $\alpha=\angle \mathrm{CAB}$
3. What are the volumes of the parallelepipeds with three of their edges given by the vectors
$\left(\mathrm{a}^{\star} \overrightarrow{\mathbf{a}}=(2,7,1), \quad \overrightarrow{\mathbf{b}}=(2,8,0), \quad\right.$ and $\quad \overrightarrow{\mathbf{c}}=(3,5,0)$?
(b) $\overrightarrow{\mathbf{a}}=(2,-2,1), \quad \overrightarrow{\mathbf{b}}=(-1,0,1)$, and $\overrightarrow{\mathbf{c}}=(0,0,5) ?$
(c) $\overrightarrow{\mathbf{a}}=(3,1,-4), \quad \overrightarrow{\mathbf{b}}=(0,1,0)$, and $\overrightarrow{\mathbf{c}}=(2,3,-1)$?

Hint: Volume of the parallelepiped is $|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$
4. If $\overrightarrow{\mathbf{a}}=2 \widehat{\mathbf{i}}+\widehat{\mathbf{j}}-\widehat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\widehat{\mathbf{i}}-2 \widehat{\mathbf{j}}+3 \widehat{\mathbf{k}}$ find
(a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
(b) $|\widehat{\mathbf{j}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})|$
(c) $|(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})|$

Standard Questions

5. Distance ℓ of the point $\overrightarrow{\mathbf{P}}$ from the line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{0}+t \overrightarrow{\mathbf{v}}$ can be calculated as $\ell=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}}_{0}\right) \times \overrightarrow{\mathbf{v}}\right|}{|\overrightarrow{\mathbf{v}}|}$

In each of the following examples, find how far is the point from the line

* (a) the point is $(1,0,0)$ and the line follows $x=1-2 t, y=4 t$ and $z=2-3 t$
(b) the point is $(9,2,4)$ and the line passes through $(8,3,4)$ parallel to the line $\overrightarrow{\mathbf{r}}=(1,1,0)+t(1,0,-1)$
(c) the point is where $x=1-2 t, y=4 t, z=2-3 t$ and $x+2 y+z+5=0$ intersect and the line passes through the origin perpendicular to both $\widehat{\mathbf{j}}$ and $\widehat{\mathbf{k}}$
(d) the point is $(7,4,1)$ and the line passes through the two points $(6,4,1)$ and $(6,3,-1)$
(e) the point is $(1,1,1)$ and the line is where the two planes $x+y=1$ and $y=0$ intersect

6. Distance ℓ of the point $\overrightarrow{\mathbf{P}}$ from the plane $\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right) \cdot \overrightarrow{\mathbf{n}}=0$ can be calculated as $\ell=\frac{\left|\left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{r}}_{0}\right) \cdot \overrightarrow{\mathbf{n}}\right|}{|\overrightarrow{\mathbf{n}}|}$ In each of the following examples find how far is the point from the plane
\star (a) the point is $(1,4,-3)$ and the plane is the $x-y$ plane (i.e. the plane containing the x and y axes)
(b) the point is $(8,1,0)$ and the plane passes through the origin at right angles to $\sqrt{2} \widehat{\mathbf{j}}-\sqrt{2} \widehat{\mathbf{k}}$
(c) the point is $(1,0,1)$ and the plane passes through the three points $(0,1,0),(0,0,-1)$ and $(1,0,0)$
(d) the point is $(0,1,0)$ and the plane passes through $(1,0,0)$ parallel to $x=0$
(e) the point is $(0,0,0)$ and the plane passes both through $(1,2,3)$ and the line $\overrightarrow{\mathbf{r}}=(0,1,2)+t(3,1,-1)$
