Calculus and Vectors B - MATH10131

Problem Sheet for Week 8

Integration & Vectors

Suggested reading: 'Stewart' Chapters 6, 8 and 12

Easy Questions

1. For each of the following pairs of vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ and scalar c evaluate all of the quantities

 $|\vec{\mathbf{a}}|, |\vec{\mathbf{b}}|, \vec{\mathbf{a}} + \vec{\mathbf{b}}, \vec{\mathbf{a}} - \vec{\mathbf{b}}, c\vec{\mathbf{a}}, c\vec{\mathbf{b}} \text{ and } \vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$

and state whether or not $\,\vec{a}\,$ and $\,\vec{b}\,$ are orthogonal

- (a) $\vec{\mathbf{a}} = (1, -\sqrt{2}), \ \vec{\mathbf{b}} = (\sqrt{3}, -1) \ \text{and} \ c = \sqrt{2}$
- (b) $\vec{\mathbf{a}} = (-5, 1, 2), \ \vec{\mathbf{b}} = (1, 3, 1) \ \text{and} \ c = -\frac{1}{3}$
- 2. Find the x and y coordinates of the vectors described below, and write the vector in the form $x\hat{\mathbf{i}}+y\hat{\mathbf{j}}$ (*Note*: conventionally, angles are always taken to be rotated anti-clockwise)
 - (a) a vector of length $\sqrt{2}$ at an angle of $\frac{3}{4}\pi$ from the x-axis
 - (b) a vector of length 2 at an angle of $\frac{3}{2}\pi$ from the x-axis
 - (c) a vector of length $\sqrt{2}/3$ pointing midway between the directions of the x-axis and the y-axis

Sketch all of these vectors on a single set of axes.

Standard Questions

- 3. Sketch the regions described in Cartesian coordinates (x, y) by each of the following examples and find the area of each region.
 - \star (a) the region between the curves $y = x^2$ and $y = x^4$
 - (b) the region between the curves $x^2 = 2py$ and $y^2 = 2px$
 - \star (c) the region between $y = \sin x$, $y = e^x$, x = 0 and $x = \frac{1}{2}\pi$
 - (d) the region between $y = \ln x$, y = 1, y = 0 and $x y^2 + 1 = 0$
- 4. Sketch the regions described in Polar coordinates (r, θ) by each of the following examples and find the area of each region.
 - \star (a) the region surrounded by the 'cardioid' $r = a(1 + \cos\theta)$ for $\theta \in [0, 2\pi]$
 - (b) the region between the radial line $\theta = 0$ and the spiral $r = 2\theta$ for $\theta \in [0, 2\pi]$
- 5. Sketch the the straight line y = 4 x and find its length from x = 0 to x = 2