Calculus and Vectors B - MATH10131

Suggested reading: 'Stewart' Chapters 6, 8 and 12

Easy Questions

1. For each of the following pairs of vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ and scalar c evaluate all of the quantities

$$
|\overrightarrow{\mathbf{a}}|, \quad|\overrightarrow{\mathbf{b}}|, \quad \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \quad \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}, \quad c \overrightarrow{\mathbf{a}}, \quad c \overrightarrow{\mathbf{b}} \quad \text { and } \quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}
$$

and state whether or not $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are orthogonal
(a) $\overrightarrow{\mathbf{a}}=(1,-\sqrt{2}), \overrightarrow{\mathbf{b}}=(\sqrt{3},-1)$ and $c=\sqrt{2}$
(b) $\overrightarrow{\mathbf{a}}=(-5,1,2), \overrightarrow{\mathbf{b}}=(1,3,1)$ and $c=-\frac{1}{3}$
2. Find the x and y coordinates of the vectors described below, and write the vector in the form $x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}$ (Note: conventionally, angles are always taken to be rotated anti-clockwise)
(a) a vector of length $\sqrt{2}$ at an angle of $\frac{3}{4} \pi$ from the x-axis
(b) a vector of length 2 at an angle of $\frac{3}{2} \pi$ from the x-axis
(c) a vector of length $\sqrt{2} / 3$ pointing midway between the directions of the x-axis and the y-axis

Sketch all of these vectors on a single set of axes.

Standard Questions

3. Sketch the regions described in Cartesian coordinates (x, y) by each of the following examples and find the area of each region.

* (a) the region between the curves $y=x^{2}$ and $y=x^{4}$
(b) the region between the curves $x^{2}=2 p y$ and $y^{2}=2 p x$
\star (c) the region between $y=\sin x, y=e^{x}, x=0$ and $x=\frac{1}{2} \pi$
(d) the region between $y=\ln x, y=1, y=0$ and $x-y^{2}+1=0$

4. Sketch the regions described in Polar coordinates (r, θ) by each of the following examples and find the area of each region.

* (a) the region surrounded by the 'cardioid' $r=a(1+\cos \theta)$ for $\theta \in[0,2 \pi]$
(b) the region between the radial line $\theta=0$ and the spiral $r=2 \theta$ for $\theta \in[0,2 \pi]$

5. Sketch the the straight line $y=4-x$ and find its length from $x=0$ to $x=2$
