Calculus and Vectors B - MATH10131

Problem Sheet for Week 5

Integration

Suggested reading: 'Stewart' Chapters 5 and 7

Easy Questions

1. Provide formulae for the following indefinite integrals

(a)
$$\int \sin \theta \, d\theta$$

(b)
$$\int \cos x \, dx$$

(c)
$$\int \sec^2 r \, dr$$

(d)
$$\int s^{13} \, \mathrm{d}s$$

(e)
$$\int \sqrt[7]{t} \, dt$$

(f)
$$\int \frac{1}{u} \, \mathrm{d}u$$

(g)
$$\int \frac{1}{|v|} \, \mathrm{d}v$$

(a)
$$\int \sin \theta \, d\theta$$
 (b) $\int \cos x \, dx$ (c) $\int \sec^2 r \, dr$
(d) $\int s^{13} \, ds$ (e) $\int \sqrt[7]{t} \, dt$ (f) $\int \frac{1}{u} \, du$
(g) $\int \frac{1}{|v|} \, dv$ (h) $\int \sinh w \, dw$ (i) $\int \cosh x \, dx$

(i)
$$\int \cosh x \, dx$$

Try to memorise all of these basic integrals.

2. Calculate the following definite integrals.

(a)
$$\int_{-\pi/2}^{\pi} \sin \theta \, d\theta$$

$$(\star b) \quad \int_{-\pi/2}^{\pi} \cos x \, \mathrm{d}x$$

$$(c) \quad \int_0^1 s^{13} \, \mathrm{d}s$$

$$(\star d)$$
 $\int_0^{128} \sqrt[7]{t} dt$

(e)
$$\int_1^e \frac{1}{u} \, \mathrm{d}u$$

(a)
$$\int_{-\pi/2}^{\pi} \sin \theta \, d\theta$$
 (**b) $\int_{-\pi/2}^{\pi} \cos x \, dx$ (c) $\int_{0}^{1} s^{13} \, ds$ (**d) $\int_{0}^{128} \sqrt[7]{t} \, dt$ (e) $\int_{1}^{e} \frac{1}{u} \, du$ (f) $\int_{0}^{\ln 2} \sinh w \, dw$ (g) $\int_{0}^{\ln 3} \cosh x \, dx$ (h) $\int_{0}^{\ln 5} \operatorname{sech}^{2} y \, dy$ (i) $\int_{-1}^{1} e^{z} \, dz$

(g)
$$\int_0^{\ln 3} \cosh x \, \mathrm{d}x$$

(h)
$$\int_0^{\ln 5} \operatorname{sech}^2 y \, \mathrm{d}y$$

(i)
$$\int_{-1}^{1} e^z \, \mathrm{d}z$$

Standard Questions

3. Provide formulae for the following indefinite integrals

$$(\star a)$$
 $\int_{a}^{3} \frac{3}{2} \sin(4\theta - \pi) d\theta$

(b)
$$\int \left(\sinh \frac{3-w}{2} + \cosh \frac{w-2}{3} + \operatorname{sech}^2 \frac{w-1}{4} + e^{5w-1/5} \right) dw$$

(c)
$$\int \left(3 + 7(4s - \frac{1}{3})^4\right) d$$

4. Find the following integrals

$$(\star_a)$$
 $\int \frac{3}{8-4x+x^2} dx$

$$(\star_a)$$
 $\int \frac{3}{8-4x+x^2} dx$ () $\int \frac{3}{\sqrt{12x-6-4x^2}} dx$

Harder Questions

5. Show that the following recursion relations hold for the integrals given.

(a)
$$K_n = nK_{n-1}$$
 for $n > 0$, where $K_n = \int_0^\infty x^n e^{-x} dx$.

i. by direct integration calculate K_0 and hence find the value of K_n for any $n \in \mathbb{N}$.

ii. given that $K_{1/2} = \frac{1}{2}\sqrt{\pi}$ what is the value of $K_{7/2}$?

(In fact, the Gamma function, defined by $\Gamma(r+1) = \int_0^\infty x^r e^{-x} dx$ extends the factorial r! to $r \notin \mathbb{N}$)

(b) $I_n = \frac{n-1}{n}I_{n-2} - \frac{1}{n}\cos x\sin^{n-1}x$ where $I_n = \int \sin^n x \, dx$. Why is this true only for $n \ge 2$?

1

- i. by direct integration calculate $\ I_0\$ and use the formula to find $\ \int \sin^6 x \, \mathrm{d}x$
- ii. by direct integration calculate $\ I_1$ and use the formula to find $\ \int \sin^7 x \, \mathrm{d}x$
- (c) $J_n = \frac{n-1}{n}J_{n-2} + \frac{1}{n}\sin x \cos^{n-1}x$ where $I_n = \int \cos^n x \, dx$. Why is this true only for $n \ge 2$?
 - i. by direct integration calculate J_1 and use the formula to find $\int \cos^5 x \, dx$
 - ii. by direct integration calculate $\ J_0\$ and use the formula to find $\ \int \cos^4 x \, \mathrm{d}x$