Calculus and Vectors B - MATH10131

Problem Sheet for Week 4 Derivatives, Series, Complex Numbers

Suggested reading: 'Stewart' Chapters 3, 4, 11 and Appendix G

Easy Questions

- 1. Consider the function $f(x) = x 5x^2$. Find
 - (a) the derivative of f(x) from the definition of f'(x); (b) the equation of the tangent at (1, -4)
- *2. Find all stationary (critical) points (if any) of the following functions and say whether each is a maximum, minimum or point of inflection

(a) $\frac{1}{1+x}$ (b) $1+x^4$ (c) $3x+x^3$ (d) $3x-x^3$

- 3. Find the absolute maximum and absolute minimum values of f on the given interval: (a) $f(x) = 3x^2 - 12x + 5$, [0,3] (b) $f(x) = x^4 - 2x^2 + 3$, [-2,3]
- 4. The position of a car is given by $s(t) = 2 + 3t + \frac{1}{2}t^2$ $t \ge 0$, where s is measured in metres.
 - (a) Find the velocity after 2 s; (b) How long does it take for the velocity to reach 20 m/s
- $\star 5$. Find the Maclaurin series for the functions
 - (a) $\cos x$ (b) e^{5x} (c) $\sinh x$ Ans: $\sum_{0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$.
- 6. Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ write the following complex numbers in the form $re^{i\theta}$. Sketch all of the points on a single diagram of the complex plane.

(a)	1	(b)	-i	(c)	i	(d)	-1
(e)	1+i	(f)	1-i	(g)	-1+i	(h)	-1-i
(i)	$1 + i\sqrt{3}$	(j)	$\sqrt{3}-i$	(k)	$-1+i\sqrt{3}$	(1)	$-\sqrt{3}-i$

Standard Questions

- *7. Find the equation of the tangent line to the curve having equation (hint: use implicit differentiation) $x^2 + y^2 - 3xy + 4 = 0$ at the point (2,4) Ans: y = 4x - 4
- *8. Sketch the function $\frac{8t}{4+t^2}$, making sure to locate all stationary (critical) points.
- 9. Find an equation of the tangent line to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{at the point } (x_0, y_0) \qquad \qquad \text{Ans: } y = \frac{b^2 x_0}{a^2 y_0} (x - x_0) + y_0$$

10 Use logarithmic differentiation to find the derivative of the function

(a)
$$y = (2x+1)^5 (x^4-3)^6$$
 (b) $y = x^{e^x}$ Ans: $y' = x^{e^x} e^x (\ln x + \frac{1}{x})$ (c) $y = x^x$

11. (a) Show that any function of the form

$$y = A\sinh(mx) + B\cosh(mx)$$
 satisfies the differential equation $\frac{d^2y}{dx^2} = m^2y$.

(b) Find y = y(x) such that $\frac{d^2y}{dx^2} = 9y$, y(0) = -4, and $\frac{dy}{dx}(0) = 6$. Ans: $y = 2\sinh(3x) - 4\cosh(3x)$ 12. Find the Taylor series for the function f at the given value of a.

(a) $\cos x$ $a = \pi$ (b) $1 + x + x^2$ a = 2

Ans: (a) $\cos x = -1 + \frac{1}{2} (x - \pi)^2 - \frac{1}{24} (x - \pi)^4 + \dots = \sum_{0}^{\infty} \frac{(-1)^{n+1} (x - \pi)^{2n}}{(2n)!}$

Harder Questions

13. Use Euler's formula to obtain the identity $\cos(4\theta) = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$. Find a corresponding identity for $\sin(4\theta)$?