## Calculus and Vectors B - MATH10131

## Problem Sheet for Week 4

Derivatives, Series, Complex Numbers

Suggested reading: 'Stewart' Chapters 3, 4, 11 and Appendix G

## Easy Questions

1. Consider the function $f(x)=x-5 x^{2}$. Find
(a) the derivative of $f(x)$ from the definition of $f^{\prime}(x)$;
(b) the equation of the tangent at $(1,-4)$
*2. Find all stationary (critical) points (if any) of the following functions and say whether each is a maximum, minimum or point of inflection
(a) $\frac{1}{1+x}$
(b) $1+x^{4}$
(c) $3 x+x^{3}$
(d) $3 x-x^{3}$
2. Find the absolute maximum and absolute minimum values of $f$ on the given interval:
(a) $f(x)=3 x^{2}-12 x+5$,
$[0,3]$
(b) $\quad f(x)=x^{4}-2 x^{2}+3, \quad[-2,3]$
3. The position of a car is given by $s(t)=2+3 t+\frac{1}{2} t^{2} \quad t \geq 0$, where $s$ is measured in metres.
(a) Find the velocity after 2 s ; (b) How long does it take for the velocity to reach $20 \mathrm{~m} / \mathrm{s}$
${ }^{\star} 5$. Find the Maclaurin series for the functions
(a) $\cos x$
(b) $e^{5 x}$
(c) $\sinh x$
Ans: $\quad \sum_{0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$.
4. Using Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ write the following complex numbers in the form $r e^{i \theta}$. Sketch all of the points on a single diagram of the complex plane.
(a) 1
(b) $-i$
(c) $i$
(d) -1
(e) $1+i$
(f) $1-i$
(g) $-1+i$
(h) $-1-i$
(i) $1+i \sqrt{3}$
(j) $\sqrt{3}-i$
(k) $-1+i \sqrt{3}$
(l) $-\sqrt{3}-i$

## Standard Questions

*7. Find the equation of the tangent line to the curve having equation (hint: use implicit differentiation) $x^{2}+y^{2}-3 x y+4=0 \quad$ at the point $(2,4) \quad$ Ans: $y=4 x-4$

* 8. Sketch the function $\frac{8 t}{4+t^{2}}$, making sure to locate all stationary (critical) points.

9. Find an equation of the tangent line to the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { at the point }\left(x_{0}, y_{0}\right) \quad \text { Ans: } y=\frac{b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)+y_{0}
$$

10 Use logarithmic differentiation to find the derivative of the function
(a) $y=(2 x+1)^{5}\left(x^{4}-3\right)^{6}$
(b) $y=x^{e^{x}}$
Ans: $y^{\prime}=x^{e^{x}} e^{x}\left(\ln x+\frac{1}{x}\right)$
(c) $y=x^{x}$
11. (a) Show that any function of the form $y=A \sinh (m x)+B \cosh (m x) \quad$ satisfies the differential equation $\frac{d^{2} y}{d x^{2}}=m^{2} y$.
(b) Find $y=y(x)$ such that $\frac{d^{2} y}{d x^{2}}=9 y, \quad y(0)=-4$, and $\frac{d y}{d x}(0)=6$.

Ans: $y=2 \sinh (3 x)-4 \cosh (3 x)$
12. Find the Taylor series for the function $f$ at the given value of $a$.
(a) $\cos x \quad a=\pi$
(b) $\quad 1+x+x^{2} \quad a=2$

Ans: (a) $\quad \cos x=-1+\frac{1}{2}(x-\pi)^{2}-\frac{1}{24}(x-\pi)^{4}+\ldots=\sum_{0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n}}{(2 n)!}$

## Harder Questions

13. Use Euler's formula to obtain the identity $\cos (4 \theta)=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$. Find a corresponding identity for $\sin (4 \theta)$ ?
