Suggested reading: 'Stewart' Chapters 14,15

Easy Questions

\star_{1}. Find an equation of the tangent plane to the given surface at the given point:
(a) $z=4 x^{2}-y^{2}+2 y, \quad(-1,2,4)$. Ans: $z=-8 x-2 y$
(b) $z=y \cos (x-y), \quad(2,2,2)$.
2. The double integral $\iint_{R} \mathrm{~d} x \mathrm{~d} y$, which can also be written as $\iint_{R} 1 \mathrm{~d} x \mathrm{~d} y$, gives the area of the region R. Use double integrals to find the area of each of the following regions:
(a) the rectangle with vertices at $(0,0),(2,0),(2,1)$ and $(0,1)$.
(b) the triangle with sides formed by the x-axis and the straight lines $x=1$ and $y=x$.
(c) the triangle between the intersections of the y-axis and the straight lines $y=x$ and $y=1$.
(d) the region where $0 \leq y \leq \sin x$ over the interval $0 \leq x \leq \pi$.
(e) the finite region between the curve $y=e^{x}$ and the straight lines $y=1$ and $x=2$.

Standard Questions

3. Find the directional derivative of the function at the given point in the direction of the vector $\overrightarrow{\mathbf{v}}$:
(a) $f(x, y)=1+2 x \sqrt{y}, \quad(3,4), \quad \overrightarrow{\mathbf{v}}=(4,-3)$.
(b) $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}, \quad(1,2,-2), \quad \overrightarrow{\mathbf{v}}=(-6,6,-3)$.
4. Sketch each region of integration and evaluate each of the following double integrals:
(a) $\iint_{R} y \mathrm{~d} x \mathrm{~d} y$ where R is the region between the parabola $y=(x-2)^{2}$ and the line $y=x$.
(b) $\iint_{R} 2 x \mathrm{~d} x \mathrm{~d} y$ where R is the region between the parabolæ $x=2\left(y^{2}-1\right)$ and $x=\frac{1}{2}\left(1-y^{2}\right)$. Ans: - 4
(c) $\iint_{R} x \mathrm{~d} x \mathrm{~d} y$ where R is the region between the parabola $y=(x-2)^{2}$ and the line $y=4-x$.
(d) $\iint_{R} \frac{x}{1+y^{5}} \mathrm{~d} x \mathrm{~d} y$ where R is the region bounded by the y-axis, the curve $y=\sqrt{x}$ and the Ans: $\frac{1}{10} \ln 33$
(e) $\iint_{R} y \cos x^{5} \mathrm{~d} x \mathrm{~d} y$ where R is the region bounded by the x-axis, the parabola $y=x^{2}$ and the $\begin{aligned} & \text { line } x=2 .\end{aligned}$
(f) $\iint_{R} y \mathrm{~d} x \mathrm{~d} y$ where R is the interior part of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ with $y \geq 0$.
5. Use polar coordinates, taking $x=r \cos \theta$ and $y=r \sin \theta$, to evaluate each of the following integrals:

* (a) $\iint_{R} \mathrm{~d} x \mathrm{~d} y$ where R is the interior of the circle $x^{2}+y^{2}=4$ Ans: 4π
(b) $\iint_{R} \mathrm{~d} x \mathrm{~d} y$ where R is the interior of the circle $(x-1)^{2}+y^{2}=1$
(c) $\iint_{R} y\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$ where R is the interior of the semicircle $(x-1)^{2}+y^{2}=1$ with $y \geq 0$

