MAHT10131

Tangent Planes, Double Integrals

Suggested reading: 'Stewart' Chapters 14,15

Easy Questions

- \star 1. Find an equation of the tangent plane to the given surface at the given point:
 - (a) $z = 4x^2 y^2 + 2y$, (-1, 2, 4). Ans: z = -8x 2y(b) $z = y \cos(x - y)$, (2, 2, 2).
 - 2. The double integral $\iint_R dx dy$, which can also be written as $\iint_R 1 dx dy$, gives the area of the region R.

Use double integrals to find the area of each of the following regions:

- (a) the rectangle with vertices at (0,0), (2,0), (2,1) and (0,1).
- (b) the triangle with sides formed by the x-axis and the straight lines x = 1 and y = x.
- (c) the triangle between the intersections of the y-axis and the straight lines y = x and y = 1.
- (d) the region where $0 \le y \le \sin x$ over the interval $0 \le x \le \pi$.
- (e) the finite region between the curve $y = e^x$ and the straight lines y = 1 and x = 2.

Standard Questions

3. Find the directional derivative of the function at the given point in the direction of the vector \vec{v} :

(a)
$$f(x,y) = 1 + 2x\sqrt{y},$$
 (3,4), $\vec{\mathbf{v}} = (4,-3).$
(b) $f(x,y,z) = \sqrt{x^2 + y^2 + z^2},$ (1,2,-2), $\vec{\mathbf{v}} = (-6,6,-3).$

- 4. Sketch each region of integration and evaluate each of the following double integrals:
 - (a) $\iint_R y \, dx \, dy$ where R is the region between the parabola $y = (x-2)^2$ and the line y = x.

★(b) $\iint_{\substack{R \\ Ans: -4}} 2x \, dx \, dy$ where *R* is the region between the parabolæ $x = 2(y^2 - 1)$ and $x = \frac{1}{2}(1 - y^2)$.

- (c) $\iint_R x \, dx \, dy$ where R is the region between the parabola $y = (x-2)^2$ and the line y = 4 x.
- (d) $\iint_R \frac{x}{1+y^5} dx dy$ where R is the region bounded by the y-axis, the curve $y = \sqrt{x}$ and the line y = 2. Ans: $\frac{1}{10} \ln 33$
- (e) $\iint_R y \cos x^5 \, \mathrm{d}x \, \mathrm{d}y$ where R is the region bounded by the *x*-axis, the parabola $y = x^2$ and the line x = 2.

(f)
$$\iint_R y \, \mathrm{d}x \, \mathrm{d}y$$
 where R is the interior part of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ with $y \ge 0$.

- 5. Use polar coordinates, taking $x = r \cos \theta$ and $y = r \sin \theta$, to evaluate each of the following integrals:
 - ★(a) $\iint_R dx dy$ where R is the interior of the circle $x^2 + y^2 = 4$ Ans: 4π
 - (b) $\iint_R dx dy$ where R is the interior of the circle $(x-1)^2 + y^2 = 1$
 - (c) $\iint_R y(x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y$ where R is the interior of the semicircle $(x-1)^2 + y^2 = 1$ with $y \ge 0$