MATH10131

Suggested reading: 'Stewart' Chapter 14

Easy Questions

- 1. Give *all* first and second-order partial derivatives of the following functions:
 - (a) $f(p,q) = \sin(p-q)$ (b) $g(r,s) = r^2 + 2rs s^2$ (c) $h(t,u) = e^{t-u^2}$ (d) $u(v,w) = v^2/w + \ln(3v + 2vw)$ (e) $v(x,y) = x^y$

2. Find dz/dt in each of the following cases, using two methods: i. by using the chain-rule for partial derivatives; and ii. by writing z in terms of t (i.e., eliminating x and y) and then differentiating

(a) $z = 3x^2y^3$ with $x = t^4$, $y = t^2$ (b) $z = \exp(1 - xy)$ with $x = t^{1/3}$, $y = t^3$ (c) $z = \sin(x + y)$ with $x = t^{-2}$, $y = t^2$ (d) $z = \cosh(y + x)$ with $x = \ln t$, y = 2/t

Both methods should give the same result in each case.

Standard Questions

3.	(a) If $f = e^{-t} \cos x$	show that	$f_t - f_{xx} = 0$	('the heat equation')
	(b) If $f = e^{x-t} + e^{x+t}$	show that	$f_{tt} - f_{xx} = 0$	('the wave equation')
	(c) If $f = e^x(\cos y - \sin z)$	show that	$f_{xx} + f_{yy} + f_{zz} = 0$	('Laplace's equation' in 3 dimensions)

- 4. (a) If $y = \sin u$ and $u = r^2 + s^2$, find the partial derivatives $\frac{\partial y}{\partial r}\Big|_s$ and $\frac{\partial y}{\partial s}\Big|_r$ (b) If $z = \sin(y^2x)$, $x = u^2 - v^2$ and y = uv, find the partial derivatives $\frac{\partial z}{\partial u}\Big|_v$ and $\frac{\partial z}{\partial v}\Big|_u$ (c) If $w = \cos(t^2)$ and $t = xe^{-y}$, find the partial derivatives $\frac{\partial w}{\partial x}\Big|_y$ and $\frac{\partial w}{\partial y}\Big|_x$ (d) If $x = \sin u - e^v$, $u = t^2 + s^2$ and v = t/s, find the partial derivatives $\frac{\partial x}{\partial t}\Big|_s$ and $\frac{\partial x}{\partial s}\Big|_t$
- 5. Find all critical points of the following functions and identify whether each one is a maximum, a minimum or a saddle point.
 - ★(a) $f(x,y) = 6xy + x^3 y^2$
 - (b) $f(x,y) = y^2 + x^2 2x$
 - (c) $f(x,y) = x^5 + y^4 5x 32y 3$
 - (d) $f(x,y) = x^2 4x + 2xy y^2 + 5$
- 6. Find the Taylor series expansions (only quadratic approximation) of the following functions of x and y about the points given

*(a)
$$f(x,y) = 2x^2 - xy - y^2 - 6x - 3y + 5$$
 about $(x,y) = (1,-2)$
(b) $f(x,y) = e^{-x^2 - y^2}$ about $(x,y) = (0,0)$