Suggested reading: 'Stewart' Chapter 14

Easy Questions

1. Give all first and second-order partial derivatives of the following functions:
(a) $f(p, q)=\sin (p-q)$
(b) $g(r, s)=r^{2}+2 r s-s^{2}$
(c) $h(t, u)=e^{t-u^{2}}$
(d) $u(v, w)=v^{2} / w+\ln (3 v+2 v w)$
(e) $\quad v(x, y)=x^{y}$
2. Find $\mathrm{d} z / \mathrm{d} t$ in each of the following cases, using two methods: i. by using the chain-rule for partial derivatives; and ii. by writing z in terms of t (i.e., eliminating x and y) and then differentiating
(a) $z=3 x^{2} y^{3}$ with $x=t^{4}, y=t^{2}$
(b) $z=\exp (1-x y)$ with $x=t^{1 / 3}, y=t^{3}$
(c) $z=\sin (x+y)$ with $x=t^{-2}, y=t^{2}$
(d) $z=\cosh (y+x)$ with $x=\ln t, y=2 / t$

Both methods should give the same result in each case.

Standard Questions

3. (a) If $f=e^{-t} \cos x$ show that $f_{t}-f_{x x}=0 \quad$ ('the heat equation')
(b) If $f=e^{x-t}+e^{x+t} \quad$ show that $f_{t t}-f_{x x}=0 \quad$ ('the wave equation')
(c) If $f=e^{x}(\cos y-\sin z)$ show that $f_{x x}+f_{y y}+f_{z z}=0 \quad$ ('Laplace's equation' in 3 dimensions)
4. (a) If $y=\sin u$ and $u=r^{2}+s^{2}$, find the partial derivatives $\left.\frac{\partial y}{\partial r}\right|_{s}$ and $\left.\frac{\partial y}{\partial s}\right|_{r}$
(b) If $z=\sin \left(y^{2} x\right), x=u^{2}-v^{2}$ and $y=u v$, find the partial derivatives $\left.\frac{\partial z}{\partial u}\right|_{v}$ and $\left.\frac{\partial z}{\partial v}\right|_{u}$
(c) If $w=\cos \left(t^{2}\right)$ and $t=x e^{-y}$, find the partial derivatives $\left.\frac{\partial w}{\partial x}\right|_{y}$ and $\left.\frac{\partial w}{\partial y}\right|_{x}$
$(\mathrm{d})^{\star}$ If $x=\sin u-e^{v}, \quad u=t^{2}+s^{2}$ and $v=t / s$, find the partial derivatives $\left.\frac{\partial x}{\partial t}\right|_{s}$ and $\left.\frac{\partial x}{\partial s}\right|_{t}$
5. Find all critical points of the following functions and identify whether each one is a maximum, a minimum or a saddle point.
(a) $f(x, y)=6 x y+x^{3}-y^{2}$
(b) $f(x, y)=y^{2}+x^{2}-2 x$
(c) $f(x, y)=x^{5}+y^{4}-5 x-32 y-3$
(d) $f(x, y)=x^{2}-4 x+2 x y-y^{2}+5$
6. Find the Taylor series expansions (only quadratic approximation) of the following functions of x and y about the points given
(a) $f(x, y)=2 x^{2}-x y-y^{2}-6 x-3 y+5$ about $(x, y)=(1,-2)$
(b) $f(x, y)=e^{-x^{2}-y^{2}}$ about $(x, y)=(0,0)$
