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We model transport of individuals across a heterogeneous scale-free network where a few weakly
connected nodes exhibit heavy-tailed residence times. Using the empirical law of the axiom of cumulative
inertia and fractional analysis, we show that “anomalous cumulative inertia” overpowers highly connected
nodes in attracting network individuals. This fundamentally challenges the classical result that individuals
tend to accumulate in high-order nodes. The derived residence time distribution has a nontrivial U shape
which we encounter empirically across human residence and employment times.
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Introduction.—In the past few decades, many metapo-
pulation models have been developed describing reaction-
transport processes on scale-free networks [1–10]. The idea
that the overall population can be understood as a series of
spatially connected but separated “patches” [11] is useful in
many areas, including the migration of humans between
cities [12], scientific collaborations [13], the spread of
epidemic diseases via individual movement [4,8,9,14], and
international air travel [15]. Often networks are assumed to
be scale free such that the order (number of connections) of
each node (patch) is drawn from a power-law distribution,
PðkÞ ∼ k−γ, γ > 0 [16–19].
While considerations of stochastic movement of individ-

uals on a complex network are very challenging, much
progress has been made using a mean-field approximation
across nodes of equal order.One introduces themeannumber
of individuals NkðtÞ ¼ 1=ηk

P
iρi;kðtÞ, where ρi;kðtÞ is the

number of individuals in the ith node of order k and ηk is the
number of nodes of order k [3–5,7]. The equation describing
transport between nodes can be written as

∂Nk

∂t ¼ −IkðtÞ þ k
X

k0
Pðk0jkÞ Ik0 ðtÞ

k0
; ð1Þ

where IkðtÞ is the flux out of a node (patch) of order k and
Pðk0jkÞ is the conditional probability that a link exists from a
node of order k to a node of order k0 [3,9,18]. Commonly, it is
assumed that the residence time in a node (before moving
elsewhere) is exponentially distributed and independent of
degree k [3–6]. This implies a constant escape rate λ for
which the flux is

IkðtÞ ¼ λNkðtÞ ð2Þ
[6,7,20]. The assumption of an uncorrelated network such
thatPðk0jkÞ ¼ k0Pðk0Þ=hki [18,21,22], together with Eq. (2),
leads to the well-known steady-state result [3,4]

Ns
k ¼

k
hki

X

k0
Pðk0ÞNs

k0 ¼
k
hki hN

si: ð3Þ

It follows fromEq. (3) that themean number of individuals in
a node (patch) increases with the order. One can interpret this
as individuals spending more time in well-connected nodes.
This famous result has been key in developing, e.g., the
PageRank algorithm and is still fundamental in our intuition
regarding network behavior. However, such conclusions are
heavily based on the assumption that the movement between
patches can be approximated by a Poisson process. That is,
the interval between consecutive escapes from a node
(residence time) follows an exponential probability density
function (PDF), ψðτÞ ¼ λe−λτ. New work has emerged in
recent years indicating that human activity is not Poisson
distributed [23]. In particular, the efforts of Barabási and
others have demonstrated that human activity often involves
heavy-tailed or Pareto type PDFs [19,24–30]. This is
particularly relevant for humanmobility due to the empirical
sociological law known as “the axiom of cumulative inertia”
(ACI), which suggests that the probability of a person
remaining in a state increases with the associated residence
time [31,32]. The ACI can be reformulated in terms of a
power-law residence time [33] with PDF,

ψðτÞ ¼ μ

τ þ τ0

�
τ0

τ þ τ0

�
μ

; ð4Þ

for fixed constants μ, τ0 > 0. For the anomalous case, μ < 1,
instead of Eq. (2), we obtain a fractional flux IakðtÞ out of a
patch

IakðtÞ ¼
1

Γð1 − μÞτμ0 0D
1−μNkðtÞ; ð5Þ

where 0D
1−μ is the Riemann-Liouville fractional derivative

defined as

0D
1−μNkðtÞ ¼

1

ΓðμÞ
d
dt

Z
t

0

NkðτÞ
ðt − τÞ1−μ dτ ð6Þ

[34–37] (details in SupplementalMaterial [38] and following
subsection). To the authors’knowledge, noworkhas yet been
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done investigating the effect of anomalous fluxes like Eq. (5)
on Eq. (3) and the subsequent implications for the long-time
distribution of network individuals.
So what happens if we introduce an anomalous flux like

Eq. (5) into heterogenenous network models? Surprisingly,
in the case of μ < 1, Eq. (3) was radically altered beyond the
effects attributable to small perturbations. Accumulation in
high-order nodes did occur, but as a short-lived transient state
of the network. In the long-time limit, individuals aggregated
in the patches with power-law residence times, invalidating
Eq. (3). This fundamentally challenges the classically held
belief that individuals will tend to accumulate in the nodes of
highest order [3,4,6–9]. Furthermore, these aggregated
individuals exhibit a nontrivial U-shaped residence time
distribution, which we find to be ubiquitous across social
phenomena of mobility and employment. In what follows,
we develop an anomalous metapopulation model describing
this behavior.
Anomalous nodes in a network.—We concern ourselves

with transport on a heterogeneous scale-free network
containing some nodes with power-law distributed resi-
dence times [see Eq. (4)] and the rest with exponentially
distributed residence times. We call nodes “anomalous” if
their average residence time, hTi ¼ R

∞
0 τψðτÞdτ, diverges.

This occurs when μ < 1 and is the case we shall focus on
(empirical evidence for its existence to follow). We intend
to show that even in the extreme case of few connections,
these power-law nodes are dominant in attracting
network individuals. Individuals leave nodes with rates
T . For exponential residence times, T is constant and
Eq. (2) describes the flux. Else for power-law residence
times, TðτÞ ¼ μ=ðτ þ τ0Þ yields Eq. (4) [33], using
ψðτÞ ¼ TðτÞ exp½− R

τ
0 TðuÞdu�. The inverse residence time

dependence of TðτÞ is another manifestation of the ACI,
which we motivate as follows. Consider a person moving to
a new city: over time, they develop a social circle, gain
steady employment, or enter family life. Consequently, the
longer their residence time, the more settled they become
and are thus less likely to leave [39,40].
For power-law residence times, it is convenient to

consider the renewal measure hðtÞ. This function can be
understood as the number of events per unit time, where an
“event” is an individual leaving a node. hðtÞ obeys the
renewal equation hðtÞ ¼ ψðtÞ þ R

t
0 hðτÞψðt − τÞdτ [41].

One can rewrite the flux IkðtÞ from Eq. (1) as

IkðtÞ ¼
d
dt

Z
t

0

hðt − τÞNkðτÞdτ; ð7Þ

which is valid for all ψðτÞ (see [35], Ch. 5 for the
derivation). Clearly, for constant hðtÞ ¼ λ, we obtain
Eq. (2). The case μ < 1 in Eq. (4) requires a fractional
analysis of the renewal measure such that we obtain

hðtÞ ¼ t−1þμ

Γð1 − μÞΓðμÞτμ0
ð8Þ

as t → ∞ [35,42]. Substituting Eq. (8) into Eq. (7) corre-
sponds to the anomalous fractional flux IakðtÞ of Eq. (5). We
will show that this flux changes the preferential residence
of individuals in well-connected nodes in favor of those
with anomalous flux, even if these are weakly connected.
This corresponds to the dominance of low-order nodes
(patches) with flux IakðtÞ over high-order nodes with flux
Ik ¼ λNkðtÞ. Let us for simplicity, assume only anomalous
nodes to have order ka ≪ hki (nodes are weakly con-
nected). The flux IðtÞ from the balance Eq. (1) becomes

IkðtÞ ¼ ½1 − δkka �λNkðtÞ þ δkka I
a
kðtÞ; ð9Þ

where δkka is the discrete Kronecker delta. By analysis of
Eq. (1) (details in Supplemental Material [38]), it follows
that in the limit t → ∞,

NkðtÞηk → δkkaN; ð10Þ

where N is the total number of individuals in the network
and ηk the number of nodes with order k. Hence, the
anomalous nodes jointly contain all individuals as t → ∞.
This key result contrasts with the popular belief that well-
connected nodes are more attractive. Furthermore, similar
results cannot be replicated by naively introducing nodes
with very low escape rates, λ ≪ 1.
We confirm the result of Eq. (10) by Monte Carlo

simulations illustrated in Fig. 1. A scale-free [PðkÞ ∼ k−γ ,
γ ¼ 1.5, 2.5], uncorrelated network was constructed using
the Molloy-Reed algorithm, containing ηka ¼ 3 anomalous
nodes of order ka ¼ 4 [43]. This was compared with
another network where all nodes have exponential

FIG. 1. NkðtÞ=N for a network of 100 nodes with 3 anomalous
nodes, all of order ka ¼ 4, with μ ¼ 0.5, τ0 ¼ 1, and N ¼ 105

individuals (initially distributed uniformly). Individuals eventu-
ally aggregate in the anomalous nodes. The inset shows Nk=N if
all nodes have constant escape rates T ¼ λ ¼ 2, equivalent to
networks with TðτÞ for τ0 ¼ 1, μ ¼ 3.
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residence times and flux IkðtÞ ¼ λNkðtÞ. Both simulations
were carried out with 100 nodes and N ¼ 105 individuals.
Simulations were also done for networks with up to 104

nodes with qualitatively similar results but a longer
transient state. Simulations almost immediately showed
the individuals accumulating in nodes according to their
order as described by Eq. (3). However, this behavior was
transient as the individuals then slowly moved into the
anomalous nodes. We observed an initially fast rate of
organization into the classically expected configuration
which then, with a (power-law) slow rate, changed into
a preference for the anomalous nodes. This leads to the
peak in NkðtÞ at k ¼ ka. One can allow nonanomalous
nodes of order ka in the network, though these will
gradually be emptied. The only consequence is a reduced
value of NkaðtÞ as ηka grows. Similarly, our findings are
qualitatively unchanged for any ka > 0; this only changes
how quickly accumulation occurs.
PDFs for residence times like Eq. (4) have previously

been applied to random walks [44–46]. However, these
papers do not consider the effects on a network structure nor
the details pertaining to the accumulated individuals.
Related work exists considering heavy-tailed residence
times in biased Watts-Strogatz networks, which demon-
strated pair aggregation akin to self-chemotacticlike forcing
[36]. Other pattern formation on scale-free networks has
been observed with order-dependent escape rates [47].
Patterns or dominant behaviors are known to arise in
networks, either as a result of heterogeneities in PðkÞ
[20] and the role of extreme values of k [48] or following
the interplay of these with escape rates or node reaction
dynamics [5].
Two-state system.—From our simulations, we observe

the formation of two states in the network. There is a slow
transport of individuals to the anomalous patches, arising
from the gradual depletion of the surrounding nodes.
Consequently, we can regard this peak in individuals as
one state S1 and the remainder of the nodes as the other
state S2. This picture (see Fig. 2) allows us to find the rate at
which the aforementioned peak grows. The corresponding
equations to Eq. (1) are

dN1

dt
¼ I2ðtÞ − I1ðtÞ; N2ðtÞ ¼ N − N1ðtÞ; ð11Þ

where NiðtÞ, IiðtÞ are the respective mean number of
individuals in, and flux from, state Si. Hence, the fluxes
S2 ↔ S1 in analogy to Eqs. (2) and (7) are given by I2ðtÞ ¼
λN2ðtÞ and I1ðtÞ ¼ d=dt

R
t
0 hðt − τÞN1ðτÞdτ, where hðtÞ

follows Eq. (8). In the limit of t → ∞, we neglect the
derivative dN1=dt ≈ 0 such that Eq. (11) becomes

N ¼ N1ðtÞ þ
1

λ

d
dt

Z
t

0

hðt − τÞN1ðτÞdτ: ð12Þ

This evaluates to

N1ðtÞ¼N

�

1−
hðtÞ
λ

�

→N; N2ðtÞ¼
NhðtÞ
λ

→ 0 ð13Þ

as t → ∞. Equation (13) thus describes the power-law slow
nonstationary aggregation, which is consistent with
Eq. (10). This phenomenon has been observed previously
in other contexts [49], though its implications for networks
has hitherto not been considered. Internal connections in S2

are negligible as they simply contribute slightly to the
probability of remaining in S2 (thus increasing the time
taken to aggregate in S1 but not the overall behavior).
Using the same parameters, Monte Carlo simulations of

the whole network were carried out to test the prediction of
Eq. (13) and the validity of the two-state simplification. As
shown in the inset of Fig. 3, the simulation is in agreement
with theoretical expectations and converges to Eq. (13) as
t → ∞. The suitability of the fit thus supports our two-state
simplifying assumption. Note that even at large times,
oscillations occur around the maximum, indicating that an
equilibrium state does not exist.
Preferential Residence.—The aim now is to provide

empirical evidence for the anomalous attractiveness of nodes
with power-law residence timePDFs likeEq. (4),withμ < 1.
Equation (13) and Fig. 1 show that individuals will tend to
reside in S1, but what is the fine structure of these residence
times? We separate the number of individuals according to
their residence times. Hence, n1ðt; τÞΔτ gives the number of
individuals with residence times in the interval ðτ; τ þ ΔτÞ,
with initial condition n1ð0; τÞ ¼ n01δðτÞ, where n01 ≪ N.
Consequently, N1ðtÞ ¼

R
t
0 n1ðt; τÞdτ. We can write n1 in

terms of the renewal measure hðtÞ [41]

n1ðt; τÞ ¼ Nhðt − τÞΨðτÞ; ð14Þ

where the survival function, ΨðτÞ ¼ R
∞
τ ψðuÞdu ¼

ðτ0=τ þ τ0Þμ, follows from Eq. (4). Substituting Eq. (8)
and letting t → ∞, we find a U-shaped distribution

FIG. 2. Network separation into two states 1,2 with transition
rates T 1, T2. The exact number of nodes in each state and the
number of connections between the states is insignificant so long
as S2 contains the majority of nodes. The intention is to
demonstrate the attractiveness of S1, even in the extreme case
where there are very few connections.
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n1ðt; τÞ≃ N
Γð1 − μÞΓðμÞτμðt − τÞ1−μ : ð15Þ

This result is consistent with the generalized arc sine
distributions for backward recurrence times [50] (see
p. 445 where x ¼ τ=t), which only holds for μ < 1.
We now compare Eq. (15) with empirical observations.

By analyzing data from an objective housing survey carried
out among 16000 households in Milwaukee between
1950–1962, we obtained the residence times since moving
into the current home [51]. This was done over an interval
of 12 years and allows us to “track” households and their
moves as illustrated in Fig. 3. The key features of the plot
are the peaks in n1=N at τ ≪ t and τ ∼ t, corresponding to
the most likely residence times being very short or
constituting the majority of the time. The same behavior
is produced by Eq. (15) and is qualitatively very different
from the predictions for μ > 1. In the latter case where the
mean residence time hTi exists, one obtains the asymptotic
result n1ðt; τÞ → ΨðτÞ=hTi [41]. This is a decaying func-
tion of residence time τ and does not provide a good
description of the data in Fig. 3.
The presence of peaks at both low and high residence

times in our data is consistent with the axiom of cumulative
inertia in that most of the individuals will either be long-
term residents (which do not move) or the sum of the
continued in- or outflux of new arrivals. We stress that these
peaks only arise if μ < 1 is also satisfied. Our findings are
consistent with similar data obtained by the Bureau of
Census during the American Housing Surveys in the
period 1985–1993 [39]. Inspired by the results for human
residence, the authors carried out a survey amongst
permanently employed academics at The University of

Manchester, and found a U-shaped distribution of employ-
ment times like Fig. 3 (see Supplemental Material [38]). We
refer to the former case as “academic trapping”: once a
permanent position at a research institution has been found,
the dynamics follow the ACI. Convergence rates to Eq. (15)
are discussed in [52].
Our assumption that individuals follow the ACI in some

nodes and not in others is used purely for the sake of
simplification. To justify this, we assume now all nodes
follow the ACI as given by Eq. (4) such that some nodes are
anomalous with μ < 1 and others have μ > 1. That is, all
network dynamics are non-Markovian with fluxes

IkðtÞ¼ ½1−δkka �
d
dt

Z
t

0

hðt−uÞNkðuÞduþδkka I
a
kðtÞ; ð16Þ

where Iak is the fractional flux defined by Eq. (5) and hðtÞ
the renewal measure for nodes with μ > 1. Numerical
simulations of this network qualitatively mimic Fig. 1,
with aggregation in the nodes with μ < 1. This is under-
stood via the mean residence time hTi of the nonanomalous
nodes. When TkðτÞ ¼ λ, one finds that hTi ≈ 1=λ. Else,
when T kðτÞ ¼ μk=ðτ þ τ0Þ and μk > 1, one obtains
hTi ¼ τ0=ðμk − 1Þ. Hence, despite one treatment being
Markovian and the other non-Markovian, both escape rates
lead to finite amounts of time spent in the nodes. Recalling
that when μ < 1, hTi → ∞, it becomes clear why the
anomalous nodes dominate the aggregation. The residence
time dependence, inspired by the ACI, is alone insufficient
to change the qualitative behavior of the network.
Discussion and Conclusion.—It is a commonly held

belief that individuals in a scale-free network will prefer
highly connected nodes (patches). Our work fundamentally
challenges this notion when individuals’ flux follows the
anomalous axiom of cumulative inertia as described by
Eq. (5). We have shown both analytically and numerically
that the flux out of anomalous nodes with power-law
residence times outperforms highly connected nodes in
the aggregation of network individuals. We further provide
empirical evidence for the associated residence time dis-
tribution nðt; τÞ of aggregated individuals, motivated by the
ACI [40]. Our findings constitute an important result in the
context of network theory given the wealth of evidence that
human behavior, such as our habits on web surfing and with
television, follows heavy-tailed distributions [28–30].
Other examples of such distributions include messaging,
queuing, and prioritizing tasks [25,27,53].
Empirical data suggest that human residence and aca-

demic employment fall into the case of anomalous behav-
ior. Long durations of permanent employment lead to
“academic trapping” where dynamics obey the ACI.
Despite our analysis only being valid in cases μ < 1, we
demonstrate empirically that this is a ubiquitous example in
population movement, with variations arising depending on
the nature of residence (renting or owning a home).

FIG. 3. The histogram shows n1ðt; τÞ=N, sampled from 12288
households in Milwaukee from 1950–1962. There is reasonable
agreement between the data and Eq. (15) for TðτÞ ≈
0.55=ð0.22þ τÞ at t ¼ 12 years between 1950–1962. Estimated
errors are indicated by the shaded regions. The inset shows
N1ðtÞ=N as measured from our simulations (using same param-
eters as Fig. 1), thus illustrating the aggregation of individuals in
S1 as described by Eq. (13).
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Strikingly, it is the fractional analysis of node dynamics
which uncovers the essential features of our model:
anomalous accumulation and a nontrivial U-shaped resi-
dence time distribution. Our findings need not apply only to
residence times in geographical regions or employed
positions, but could equally describe entrenchment of
ideological beliefs, convictions, etc.
We believe our findings will have a significant impact on

network metapopulation models studying epidemiology
(e.g. the Susceptible-Infected-Recovered (SIR) model)
[4,8,9,14]. It is well known that the time spent by travelers
at a destination is characterized by wide fluctuations, which
crucially affects the chance and duration of mixing events
and therefore, has a strong impact on the spread of an
emerging disease [54]. We thus expect anomalous patches
to be significant in understanding how diseases might
spread when individuals are reluctant to leave an area.
Some work on memory effects including residence time
dependence [54,55], second-order Markov processes [56],
and the effects of individual movements [57] has already
been carried out.
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