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Population heterogeneity in the fractional master equation, ensemble self-reinforcement,
and strong memory effects
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We formulate a fractional master equation in continuous time with random transition probabilities across
the population of random walkers such that the effective underlying random walk exhibits ensemble self-
reinforcement. The population heterogeneity generates a random walk with conditional transition probabilities
that increase with the number of steps taken previously (self-reinforcement). Through this, we establish the
connection between random walks with a heterogeneous ensemble and those with strong memory where
the transition probability depends on the entire history of steps. We find the ensemble-averaged solution of
the fractional master equation through subordination involving the fractional Poisson process counting the
number of steps at a given time and the underlying discrete random walk with self-reinforcement. We also
find the exact solution for the variance which exhibits superdiffusion even as the fractional exponent tends to 1.
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I. INTRODUCTION

Anomalous diffusion appears in many natural processes in
physics, chemistry, and biology when measurements of mean-
squared displacement m(2)(t ) show a nonlinear dependence
on time: m(2)(t ) ∝ tμ [1–5]. A variety of models has been
suggested for anomalous diffusion including continuous-time
random walk [6], fractional Brownian motion [7], gener-
alized Langevin equation [8–10], and Lévy walks [11,12].
A typical feature of anomalous transport models involving
temporal subdiffusion and superdiffusion is the appearance
of memory effects. When a stochastic process depends on
a series of previous events, it is often referred to as having
non-Markovian characteristics or memory. In many natural
phenomena, memory is a recurring theme, such as earth-
quakes [13], quantum physics [14–16], intracellular transport
[17–20], and cell motility [21]. Another direction to model
anomalous diffusion is through random walks that account
for the whole history of its past, described as strong memory
[22–27]. However, it is difficult to justify why natural pro-
cesses should exhibit such strong memory effects as seen in
elephant random walks [22], especially for inanimate objects
such as intracellular organelles. In efficient search strategies
[28] that have an essential role in time-sensitive biological
processes [29], strong memory has significant effects [30].
More recently, it was shown that strong memory and rein-
forcement can generate superdiffusion in a continuous-time
and finite-velocity strong memory model [31], even in the
presence of rests [32]. However, when including a trapping
state, the superdiffusion caused by reinforcement was only
transient [33].
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In biology, cell motility and intracellular transport of-
ten exhibit anomalous characteristics and memory effects
[17,20,34,35]. The movement of organelles is often subdif-
fusive due to the crowded cytoplasm [35], which is in direct
contrast with the need to efficiently and quickly transport
material to specific targets, accomplished by active transport.
Apart from this, cellular populations are almost always het-
erogeneous [36], an example being the different molecular
expression levels across individual cells in the brain [37–39].
Furthermore, single cells contain ∼102–103 heterogeneous
vesicles with various sizes, morphology, and motion essential
for all eukaryotic life such as lysosomes [40]. Mathemati-
cally, models accounting for static population heterogeneity
need to be explored so that the “population-averaged assays”
[36], which pervade much biological literature [19,35], can be
accurately quantified and the effects of small yet important
subpopulations properly identified [36].

The aim of this paper is to explore the effects of popula-
tion heterogeneity, characterized by a distribution in transition
probability, on the fractional master equation. Below, we
demonstrate how heterogeneity changes the fundamental
characteristic of the fractional master equation, used in
modeling many biological processes that exhibit anoma-
lous trapping [41,42]. The effective underlying random walk
exhibits self-reinforcement due to the ensemble-averaged
conditional transition rates increasing as previous steps ac-
cumulate. Moreover, by introducing heterogeneity into the
fractional master equation, ballistic superdiffusion is gener-
ated even when the fractional exponent μ → 1. This is natural
as ballistic superdiffusion is expected from the results of pre-
vious works [43–45]. However, what is surprising is that the
ensemble of random walks with distributed transition prob-
abilities leads to a master equation with self-reinforcement
and strong memory. Thus, we show from a random-walk
perspective the reason behind why heterogeneity is needed
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in natural phenomena for efficient transport of an ensemble.
Furthermore, we show the mathematical link between popu-
lation heterogeneity and strong memory. While the topic of
random walks in heterogeneous, random environments has
been covered extensively in the literature [46,47], it will not
be treated in this paper.

II. FRACTIONAL MASTER EQUATION WITH RANDOM
TRANSITION PROBABILITIES

The anomalous movement of particles on a lattice that
experience trapping with heavy-tailed waiting times can be
described by the fractional master equation [6]

∂ p

∂t
= −i(x, t ) + qi(x − a, t ) + (1 − q)i(x + a, t ). (1)

Here, p is the probability to find the particle at position x =
ka (k ∈ Z) and time t . The anomalous escape rate i(x, t ) is
defined as

i(x, t ) = τ
−μ
0 D1−μ

t p(x, t ), 0 < μ < 1, (2)

and D1−μ
t is the Riemann-Liouville derivative

D1−μ
t p(x, t ) = 1

�(μ)

∂

∂t

∫ t

0

p(x, t ′)
(t − t ′)1−μ

dt ′. (3)

Equation (1) describes a random walk where a particle leaves
its current state x at time t with rate i(x, t ) and either jumps
with constant probability q or 1 − q to x + a or x − a, respec-
tively [6]. The anomalous rate defined in Eq. (2) characterizes
waiting times that are Mittag-Leffler distributed [48]. From
(1), by setting q = 1/2 and taking the continuous-space limit,
one can obtain the fractional diffusion equation ∂ p/∂t =
Dμ∂2D1−μ

t p(x, t )/∂x2, with the fractional diffusion coef-
ficient Dμ = a2/2τμ

o . Equation (1) with q = 1/2 and the
fractional diffusion equation produces subdiffusive behavior
characterized by the mean-squared displacement (and also
the variance since the mean is zero) m(2)(t ) ∼ tμ where 0 <

μ < 1. In order to model population heterogeneity, q, the
probability of jumping one step in the positive direction, now
becomes a random variable for each independent realization
of a random walk. In this case, what is the behavior of the
ensemble average of the heterogeneous population?

Clearly for many biological processes, such as intracellular
transport [17], the value of q is heterogeneous across the
population of particles. Since the bias parameter q is related to
the speed as v ∼ 2q − 1, therefore, q can be obtained from the
speed distribution in experiments. Population heterogeneity
in speeds is evident in many publications on the topic of
intracellular transport [20,35,49] and cell motility [34]. To
account for the heterogeneity across a population of particles,
consider that q in Eq. (1) is a random variable that is beta
distributed with a probability density function

f (q) = qα+−1(1 − q)α−−1

B(α+, α−)
, (4)

where B(α+, α−) is the beta function.
If q becomes random, how does the anomalous behavior in

Eq. (1) change? One might reasonably expect that ensemble
fluctuations in q will increase the dispersion of particles lead-
ing to randomness of the fractional diffusion coefficient. This

idea for standard diffusion has been considered by theories
of “diffusing diffusivity” [50–52] and such heterogeneity was
demonstrated to be advantageous for biochemical processes
triggered by first arrival [29]. Moreover, heterogeneity can
be modeled in many ways such as a nonconstant diffusion
coefficient [53–55] or a nonconstant anomalous exponent
[41,48,56–58]. Dichotomously alternating force fields in the
fractional Fokker-Planck equation have also been used to
model temporal heterogeneity [59].

In what follows, we will demonstrate that the randomness
of q leads to the phenomenon of ensemble self-reinforcement
and is also connected to random walks exhibiting strong mem-
ory. To show this, we need to find the explicit expression for
the ensemble-averaged probability p̄(x, t ) in continuous time
defined as

p̄(x, t ) =
∫ 1

0
p(x, t |q) f (q)dq, (5)

where p(x, t |q) is the solution for the master equation (1) with
a single value of q. In order to do this, we first consider the
underlying discrete-time random walk for (1) and then utilize
the idea of subordination [6,60].

III. ENSEMBLE SELF-REINFORCEMENT AND STRONG
MEMORY EFFECTS

The underlying discrete-time random walk for Eq. (1) is
described by the difference equation

Xn+1 = Xn + ξn+1, (6)

where the random jump ξn = ±a with probability q and 1 − q,
respectively, and X0 = 0. The conditional probability

P(x, n|q) = Prob{Xn = x} (7)

obeys the master equation

P(x, n + 1|q) = qP(x − a, n|q) + (1 − q)P(x + a, n|q).
(8)

The solution [60] is

P(x, n|q) =
(

n
1
2

(
n + x

a

))q
1
2 (n+ x

a )(1 − q)
1
2 (n− x

a ). (9)

The particle reaches the point x at time n if it makes 1
2 (n +

x/a) positive jumps and 1
2 (n − x/a) negative jumps.

Next, we define a probability function

P̄(x, n) =
∫ 1

0
P(x, n|q) f (q)dq, (10)

which describes the effective underlying random walk for X̄n

such that

P̄(x, n) = Prob{X̄n = x}. (11)

By averaging (8) using f (q) from (4), we obtain the master
equation

P̄(x, n + 1)=u+
n (x − a)P̄(x − a, n) + u−

n (x + a)P̄(x + a, n),
(12)
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where the transition probabilities u+
n (x) and u−

n (x) are defined
as follows,

u+
n (x) =

∫ 1
0 qP(x, n|q) f (q)dq∫ 1
0 P(x, n|q) f (q)dq

, u−
n (x) = 1 − u+

n (x). (13)

Transition probabilities (13) follow from averaging (8) with
respect to f (q). By using the solution (9) we find

u±
n (x) = α± + 1

2

(
n ± x

a

)
α+ + α− + n

. (14)

Surprisingly, randomness of the parameter q generates
effective transition probabilities u±

n (x), which describes the
ensemble self-reinforcement phenomenon. It follows from
(14) that the probability to step in the positive or negative
direction increases as more steps in those directions are made
in the past, which is known as self-reinforcement. In what
follows, we demonstrate the link between Eqs. (12) with (14)
and random walks with transition probabilities dependent on
the entire history of its past, a property called strong memory.
Furthermore, we provide an explanation on how these two
concepts are linked despite the difference in the underlying
mechanism.

In fact, Eq. (12) describes a random walk with strong mem-
ory: X̄n+1 = X̄n + ξ̄n+1. The conditional transition probability
for the discrete steps, ξ̄n, depends on its entire history such
that

Prob
{
ξ̄n+1 = ±a |ξ̄1,...,ξ̄n

} = α± + n±
α+ + α− + n

. (15)

Here, n± is the number of steps taken in the positive and
negative directions, respectively. Equation (15) can be ob-
tained from the transition probabilities (14) by combining the
current position x = a(n+ − n−) and the total number of steps
n = n+ + n−. The transition probabilities (15) depend on the
entire history because n± counts the number of steps taken
in the positive and negative directions up to time n. This
dependence of the conditional transition probability on the
entire history of the random walk is known in the literature
as strong memory [22–27,31,32]. The conditional transition
probability (15) is exactly the same as that of a Pólya urn
model [27,60] where initially the urn contains α+ red and α−
black balls and then only one ball is added per draw with n±
the number of red and black balls drawn, respectively.

Comparing Eqs. (14) and (15), it is clear that ensemble
self-reinforcement generates strong memory effects. How-
ever, a key feature of the random walk governed by (12)
is that the strong memory effect is a by-product of the het-
erogeneity in the ensemble. Does this mean that, through
heterogeneity, particles performing the random walk in (12)
are somehow more likely to step in the positive or negative
direction dependent on their history? On the contrary, this
ensemble self-reinforcement is a consequence of sampling a
heterogeneous population. This type of effect that leads to
reinforcement is discussed in probability theory as an afteref-
fect or spurious contagion [60]. Rather than steps becoming
more likely given the previous step, particles with a very
high propensity to always step to the right or left are more
likely to be found at the positive or negative extremities of the
population. This is especially pertinent in cell biology as often

in microscopic scales, such as intracellular organelles, there
is no internal mechanism of reinforcement or “contagion”
and memory effects could be due to sampling a heteroge-
neous population. Equations (14) illustrate the fact that simply
changing the transition probability q from a constant to a ran-
dom variable completely changes the fundamental underlying
mechanism of transitions in the ensemble.

IV. ENSEMBLE-AVERAGED SOLUTION FOR THE
FRACTIONAL MASTER EQUATION

By using the concept of subordination [6,60], we can find
the explicit expression for the ensemble-averaged probability
distribution p̄(x, t ) in continuous time defined in (5). The
underlying random walk for the master equation (1) is the
compound fractional Poisson process [61]

Xμ(t ) =
Nμ(t )∑
i=1

ξi, (16)

where ξi are random jumps, Nμ(t ) is the fractional Poisson
process, and Xμ(0) = 0. The latter describes the number of
steps taken at time t given the waiting time is Mittag-Leffler
distributed [61]. Using subordination [6,60], we can write

p̄(x, t ) =
∞∑

n=0

P̄(x, n)Qμ(n, t ), (17)

where P̄(x, n) is defined in (10) and Qμ(n, t ) = Prob{Nμ(t ) =
n}. One can also write down p̄(x, t ) in terms of the position of
the continuous-time random walk

p̄(x, t ) = Prob{X̄μ(t ) = x}, (18)

where

X̄μ(t ) = X̄Nμ(t ). (19)

From the master equation (12) or by averaging the solution (9)
as shown in (10), one can obtain

P̄ =
(

n
1
2

(
n + x

a

))B
(

1
2

(
n + x

a

) + α+, 1
2

(
n − x

a

) + α−
)

B(α−, α+)
. (20)

The probability Qμ(n, t ) is given by [61]

Qμ(n, t ) =
(

t

τ0

)nμ ∞∑
k=0

(k + n)!

n!k!

( − t
τ0

)kμ

�(μ(k + n) + 1)
. (21)

So substituting (20) and (21) into (17) gives the ensemble-
averaged solution of the fractional master equation (1) through
subordination involving the fractional Poisson process and the
underlying discrete random walk with self-reinforcement.

Figure 1 illustrates the solution (17) obtained by Monte
Carlo simulations for the symmetrical case (α+ = α−). One
can see the unusually strong dispersion for the subdiffusive
master equation, which is a result of the interaction between
ensemble self-reinforcement described by P̄(x, n) and heavy-
tailed waiting times with a divergent mean described by
Qμ(n, t ).
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FIG. 1. Probability distribution of random walkers in continuous
time with Mittag-Leffler distributed waiting times μ = 0.75, τ0 = 1,
varying values of α+ = α− = α/2 for the beta distribution (4), a = 1,
tend = 103, and N = 104.

Monte Carlo simulations

The simulations for all figures were performed in the fol-
lowing way:

(1) Initialize N particles at X (0) = 0. For each particle, the
value of q is a random variable drawn from a beta distribution.

(2) Then, for each particle, draw a value for T from
Mittag-Leffler distributed random numbers. Then X (t +
T ) = X (t ) + Z where Prob[Z = 1] = q and Prob[Z = −1] =
1 − q.

(3) Iterate until a required end time tend.
Mittag-Leffler distributed random numbers were generated

using the standard procedure [see (20) in Ref. [62] or [63]].

V. SUPERDIFFUSION GENERATED BY ENSEMBLE
SELF-REINFORCEMENT

Now, we will show how ballistic superdiffusion can arise
due to ensemble self-reinforcement. Although we could take
(1) directly and find the first and second moments (using the
results in Refs. [43–45]), we take a different approach to show
intuitively why the ensemble heterogeneity leads to superdif-
fusion. To do this, we need to find the moments corresponding
to the discrete case of (17),

M (m)(n) =
∑
x∈�

xmP̄(x, n), m ∈ {1, 2, . . . }. (22)

Here, the summation is over all the lattice positions � = {ka}
with k ∈ Z. Using (10), we can rewrite (22) as

M (m)(n) =
∫ 1

0

[∑
x∈�

xmP(x, n|q)

]
f (q)dq. (23)

Recognizing that the summation in (23) is simply the mth
moment of the discrete random walk Xn governed by (8) for
any fixed value of q, we find

M (m)(n) =
∫ 1

0
E[(Xn)m] f (q)dq. (24)

First, we find the conditional moments of the underlying ran-
dom walk for fixed q: E(Xn) = G′(1) and E(X 2

n ) = G′′(1) +
G′(1), where G(z) = [qza + (1 − q)z−a]n is the probability

generating function [64]. Performing this calculation, we ob-
tain

E(Xn) = an(2q − 1) (25)

and

E
(
X 2

n

) = a2(2q − 1)2n2 + [1 − (2q − 1)2]a2n. (26)

The variance is proportional to n:

Var[Xn] = [1 − (2q − 1)2]a2n. (27)

Now, we take the average of (25) and (26) to obtain the
variance of the effective random walk. In contrast to (27), the
variance involves a term proportional to n2,

Var[X̄n] = [(2q − 1)2 − (2q − 1)2]a2n2

+ [1 − (2q − 1)2]a2n, (28)

where

q̄ =
∫ 1

0
q f (q)dq, (2q − 1)2 =

∫ 1

0
(2q − 1)2 f (q)dq.

(29)

The difference between (27) and (28) is fundamentally im-
portant because the term proportional to n2 generates ballistic
superdiffusion.

Symmetric beta distribution: Zero average advection

To avoid the averaged advection caused by an asymmetric
beta distribution, we only consider cases when the beta distri-
bution is symmetric,

α+ = α− = α

2
. (30)

The absence of averaged advection is emphasized in Fig. 1,
which shows symmetric distributions for different values of α.
Figure 1 also shows that in the limit of large α, the distribution
reverts back to the distribution typical for the subdiffusive
regime.

For the symmetric case with q = 1/2, one can obtain

Var[X̄n] = M (2) − [M (1)]2 = a2

1 + α
n2 + a2α

1 + α
n. (31)

The reason why the variance has a term proportional to n2

can be explained by ensemble self-reinforcement expressed
by the transition probabilities in (14), which leads to a greater
dispersion of particles over time compared to standard random
walks. Note that this result can be obtained by also finding
the moments through a recursion relation from the master
equation (12) [25].

One can find the variance for the effective continuous-time
random walk

Var[X̄μ(t )] = a2

1 + α
〈n2(t )〉 + a2α

1 + α
〈n(t )〉, (32)

where X̄μ(t ) is defined in (19), and 〈n2(t )〉 and 〈n(t )〉 are
derived from the fractional Poisson process [61] as

〈n(t )〉 = 1

�(μ + 1)

(
t

τ0

)μ

(33)
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FIG. 2. Variance of random walkers in continuous time with
Mittag-Leffler distributed waiting times with varying values of μ,
τ0 = 1, α/2 = 1/2, tend = 103, and N = 104. The blue dashed line
shows Var[X̄μ(t )] ∝ t2. The red dotted line shows Var[X̄μ(t )] ∝ t .

and

〈n2(t )〉 = 1

�(μ + 1)

(
t

τ0

)μ

+ Aμ

�(μ + 1)

(
t

τ0

)2μ

, (34)

where

Aμ =
√

π

22μ−1�
(
μ + 1

2

) = �(μ)

�(2μ)
. (35)

Finally, the variance in continuous time is

Var[X̄μ(t )] = a2

�(μ + 1)

[(
t

τ0

)μ

+ Aμ

1 + α

(
t

τ0

)2μ
]
. (36)

The appearance of superdiffusion is demonstrated by nu-
merical simulations in Figs. 2 and 3. Figure 2 demonstrates
numerically the relation in (36) and (37) since for values of
μ < 0.5, Var[X̄μ(t )] shows subdiffusion and for values μ >

0.5 shows superdiffusion. Moreover, for μ = 0.5, Var[X̄μ(t )]
is exactly diffusive. Note that when μ = 1, Nμ(t ) becomes
a Poisson process with rate 1/τ0 and the variance becomes

FIG. 3. Variance of random walkers in continuous time with
varying values of α/2, and Mittag-Leffler distributed waiting
times with μ = 0.75, τ0 = 1, tend = 103, and N = 104. The blue
dashed line shows Var[X̄μ(t )] ∝ t2. The red dotted line shows
Var[X̄μ(t )] ∝ t .

ballistic:

Var[X̄μ(t )] = a2 t

τ0
+ a2

1 + α

(
t

τ0

)2

. (37)

This result is different from the case when an external force
combines with the fractional master equation [44,45] where
the first moment is m(1)(t ) ∼ tμ and so the second moment
becomes m(2)(t ) ∼ t2μ. Although different, this result natu-
rally follows when considering the heterogeneous population
average of the first and second moments from previous results
[43–45]. The superdiffusion caused in this process is a result
of a heterogeneous population of particles and this generates
ensemble self-reinforcement demonstrated by (14). A simple
random walk with bias and fractional rates would be described
by (1) where q is a constant. Explicitly, the mean position
and variance of this random walk conditional on the transition
probability are [43–45]

E[X (t )|q] = a(2q − 1)

�(μ + 1)

(
t

τ0

)μ

, (38)

Var[X (t )|q] = (2q − 1)2

(
t

τ0

)2μ[
2a2

�(2μ + 1)
− a2

�(μ + 1)2

]

+ a2

�(μ + 1)

(
t

τ0

)μ

. (39)

Clearly, (39) exhibits superdiffusive behavior but the terms
proportional to t2μ disappear when μ = 1. The reason for this
is that the underlying random walk model Xn has variance pro-
portional to n, as seen in (27). However, (36) exhibits ballistic
superdiffusion when μ = 1 because the effective random walk
of the ensemble X̄n has variance (26) proportional to n2 and n.

Furthermore, from this heterogeneous population model
we are able to achieve a smooth transition in time between
subdiffusion and superdiffusion. This is evident by increasing
the value of α → ∞. This is intuitive as the symmetric beta
distribution approaches a delta function centered at q = 1/2
as α → ∞ and so we recover the standard fractional master
equation and the resulting subdiffusion. However, when α ∼ 1
and μ > 1/2, we obtain superdiffusion in the long-time limit.
This transition between superdiffusion and subdiffusion is
demonstrated using computational simulations in Fig. 3.

VI. DISCUSSION

Although there is vast literature on strong memory effects
in statistical physics [22–27,31,32], many elephant random-
walk-like models lack the mechanism of how the strong
memory is produced. Given that a heterogeneous popula-
tion of random walkers emulates strong memory, this opens
another avenue for modeling biological processes that dis-
play strong memory properties and yet are heterogeneous
ensembles of inanimate objects, such as organelles and micro-
molecules. Might it be that nature has developed a mechanism
such as ensemble self-reinforcement that we demonstrate in
(14) as a proxy for strong memory? Such questions have
plagued the field of intracellular transport for decades where
brainless membrane-bound vesicles seemingly engage in ran-
dom walks that appear to have correlations caused by strong
memory effects [18,20]. For example, a high value of q might
represent a higher affinity to attach to the dynein family of
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motor proteins and therefore the particle moves very direc-
tionally towards the cell nucleus whereas a low value of q
would be a higher affinity to attach to kinesin which moves
towards the cell periphery. A value of q ∼ 1/2 would imply
that a particle may have an equal chance to move in either di-
rections. The relationship between q and speed v of a vesicle is
v ∼ 2q − 1. So the bias parameter q can be obtained from ex-
periments. Heterogeneity in velocities of intracellular vesicles
is well established [20,35,49]. Ensemble self-reinforcement
enables the organization of directional movement as an en-
semble effect from heterogeneity. Furthermore, we showed
that ensemble self-reinforcement can generate ballistic su-
perdiffusion.

This finding also fits nicely with the emerging theory that,
in biological processes, the first arrival times of a signal to
a cell (or neuron) influence the subsequent system behavior
far more than the average arrival times [65]. With ensemble
self-reinforcement the cell can organize the movement of
these particles such that it maintains efficiency of transport
and overcomes the trapping that occurs in the crowded cyto-
plasm. We hypothesize that ensemble self-reinforcement is a
way that the cell efficiently transports vesicles in a heavily
crowded intracellular environment, which has been shown to
be subdiffusive [19,41].

VII. SUMMARY

In this paper, we formulate a fractional master equa-
tion with random transition probabilities across the popu-
lations of random walkers. This population heterogeneity
generates ensemble-averaged transition probabilities that in-
crease with the number of steps taken previously, which we
call ensemble self-reinforcement. These averaged transition

probabilities open a different avenue to model strong memory
effects through a heterogeneous ensemble of random walkers.
Furthermore, we show analytical solutions for the variance
and probability density function of the ensemble-averaged
effective random walk.

Through this, we establish the connection between random
walks with a heterogeneous ensemble and those with strong
memory where the transition probability depends on the entire
history of steps. We find the ensemble-averaged solution of
the fractional master equation through subordination involv-
ing the fractional Poisson process counting the number of
steps at a given time and the underlying discrete random walk
with self-reinforcement. We also find the exact solution for the
variance which exhibits superdiffusion even as the fractional
exponent tends to 1. This paper demonstrates that heteroge-
neous populations of anomalous random walks can achieve
effective transition probabilities describing strong memory,
which we call ensemble self-reinforcement. We find that such
heterogeneous populations overcome heavy-tailed waiting
times with a divergent mean to exhibit ensemble superdiffu-
sion, thus revealing an intrinsic advantage of heterogeneity.
Moreover, this provides another mechanism through which
seemingly unintelligent systems can exhibit strong memory.
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