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Memory effects and Lévy walk dynamics in intracellular transport of cargoes
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We demonstrate the phenomenon of cumulative inertia in intracellular transport involving multiple motor
proteins in human epithelial cells by measuring the empirical survival probability of cargoes on the microtubule
and their detachment rates. We found the longer a cargo moves along a microtubule, the less likely it detaches
from it. As a result, the movement of cargoes is non-Markovian and involves a memory. We observe memory
effects on the scale of up to 2 s. We provide a theoretical link between the measured detachment rate and the
superdiffusive Lévy-walk-like cargo movement.
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I. INTRODUCTION

Intracellular transport of cargoes along microtubules is a
classical example of active transport [1,2]. It is critical to
cellular function and it is a challenging statistical problem
from the viewpoint of active matter physics [3–7]. In vitro ex-
periments show that the distance traveled by cargoes substan-
tially increases when the cargoes are transported by multiple
motor proteins [8]. Various models have been developed that
aim to explain how motors achieve long-range transport along
microtubules [9–20].

Recently, it has been discovered that active cargo transport
in vivo self-organizes into Lévy walks [21]. Lévy walks de-
scribe a wide spectrum of biological processes, such as T-cells
migrating in brain tissue, collective behavior of swarming
bacteria, and animals optimizing their search for sparse food
[22]. Endosomal Lévy dynamics involves long flights in one
direction due to the active movement along microtubules
driven by multiple motors. When all active motors disengage,
the cargo complexes detach from the microtubule and reattach
to a new microtubule heading in another direction [21]. The
travel distances have power-law distributions with diverg-
ing variances [22–26] that explains the anomalously long
flights of cargo complex. In Ref. [21] the authors proposed
the concept of memoryless self-reinforced directionality to
demonstrate the emergence of Lévy walks.

However, the unanswered question remains: what is the
precise mesoscopic kinetic mechanism of anomalous direc-
tional persistence? To answer this question, we performed in
vivo experiments recording thousands of trajectories of intra-
cellular lipid bound vesicles in live retinal pigment epithelium
(RPE) cells and human bone osteosarcoma epithelial (U2OS)
cells. We found similar results for both cell lines. Therefore,
we report only results for RPE cells since a microscope
with higher resolution was used to image them (see Sec. V
for experimental details). In Fig. 1, we illustrate Lévy-like
trajectories of vesicles inside RPE cells which consist of long
persistent runs in one direction separated by rapid jiggling
events when vesicles change direction.

In this paper we reveal a mechanism for anomalous direc-
tional persistence of cargoes in human cells: the phenomenon
of cumulative inertia. Experimentally we found the longer a
cargo moves along a microtubule, the less likely it will detach
from it. Our data provides a direct measurement of the meso-
scopic detachment rate as a decreasing function of the running
time. We found that this time follows a heavy tailed Pareto
distribution which leads to a Lévy-walk-like movement of
cargoes. Since the observed detachment probability depends
on how long the cargo has been moving, this active transport
involves memory and it exhibits a typical non-Markovian
behavior. Note that we are dealing with the memory which is
not physically or chemically stored or retrieved and therefore
energetically costs cells nothing.

II. EMPIRICAL SURVIVAL PROBABILITY, MESOSCOPIC
DETACHMENT RATE, AND MEAN RESIDUAL TIME

One of our aims is to measure important statistical charac-
teristics of cargo transport: the empirical survival probability
of cargoes on the microtubule, the empirical mesoscopic
detachment rate, and the mean residual time. The survival
probability was estimated by using the nonparametric Kaplan-
Meier estimator [27]. It is a common tool in many areas such
as engineering to measure the time-to-failure of machine parts
or medicine to determine time to death after an operation, time
to recovery from an accident, and duration of pain relief [27].
We found a good agreement between the empirical survival
probability � and the heavy tailed Pareto distribution:

�(τ ) = (1 + τ/τ0)−α, (1)

with the anomalous exponent α = 1.6 ± 0.17 and τ0 =
0.17 ± 0.1 s up to 1–2 s (Fig. 2). The empirical mesoscopic
detachment rate is also found to be a decreasing function of
the flight time τ (inset Fig. 2). This means that the longer a
cargo remains on a microtubule, the less likely it will detach
from it (the phenomenon of cumulative inertia). Surprisingly,
although having very different origin, a similar effect of
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FIG. 1. Cargoes movement along microtubules visualized in a
living RPE cell [panel (a)]. Panel (b) shows an enlargement of the
boxed region in (a). Trajectories (yellow) consist of long flights
in one direction and multiple turnings. Numbers indicate the time
progress. The longest trajectory (148.5 s) in panel (b) consists of 900
flights (see Sec. V for the description of the segmentation procedure).

cumulative inertia is well studied and received revived interest
in social and behavioral sciences [28,29]. The empirical meso-
scopic detachment rate has a good fit with the rate inversely
proportional to the flight time τ :

γ (τ ) = α/(τ + τ0), (2)

with the same anomalous exponent α = 1.6 ± 0.17 and τ0 =
0.17 ± 0.1 s. Note the relationship between �(τ ) and γ (τ ):
�(τ ) = exp (− ∫ τ

0 γ (t )dt ). The time-dependent detachment
rate γ (τ ) has the following meaning: the product γ (τ )�τ

defines the conditional probability of cargo detachment in
the interval (τ, τ + �τ ) given that it has moved along the
microtubule in the time interval (0, τ ). For memoryless car-
goes this rate will be constant and will not depend on how
long the cargo has moved before. It is well known that the
empirical rate is notoriously difficult to estimate [27] since
it contains the derivative of the empirical survival function.
Therefore, the empirical survival probability (which is an
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FIG. 2. Experimentally determined survival function �(τ ) (dots)
as a function of time τ decays as a power law on intermediate time
scale with anomalous exponent α = 1.6 ± 0.17 and a time-scale
parameter τ0 = 0.17 ± 0.1 s. The errors were calculated with the
Greenwood formula for the nonparametric Kaplan-Meier estimator
[27]. The red dashed curve is a power-law fit Eq. (1) with the same
α and τ0. The orange solid curve is the survival function obtained
in numerical simulations of the Klumpp-Lipowsky model of the
cargo dynamics with six kinesin and six dynein motors. Details
of simulations are given in Sec. VI. Inset: corresponding empirical
mesoscopic detachment rate function γ (τ ) (dots) as a function of
time is inversely proportional to τ , Eq. (2), on intermediate time
scales (red dashed curve) with the same α and τ0 as in the main figure.
The orange solid curve is the rate function obtained in numerical
simulations.

integral quantity) has a smoother behavior compared to the
empirical mesoscopic detachment rate function (Fig. 2).

The value of experimental exponent α = 1.6 ± 0.17 falls
in the interval 1 < α < 2. This is an extraordinary finding
since it shows that the survival function has finite mean, 〈T 〉 =∫ ∞

0 τ�(τ )dτ , but divergent second moment [22]. Specifically
the lack of the second moment leads to the emergence of the
Lévy walklike trajectories of vesicles (Fig. 1). Such trajec-
tories exhibit sub-ballistic superdiffusive behavior. We also
obtain a good power-law fit with the anomalous exponent
(α � 1.5 ± 0.17) for the probability density of flight lengths
(Fig. 3), which confirms the Lévy walk nature of the vesicles
motion. The speed v of each flight was assumed to be con-
stant. The probability density of flight length is obtained from
the survival function as

f (L) = −� ′(L/v)/v, (3)

where � ′(z) = d�(z)/dz. In Fig. 3 the distribution of flight
velocities is also shown.

If the cargo has survived on the microtubule up to time t ,
how much longer is it expected to move (survive) along the
microtubule? This time is called the mean residual time T̃ (t ).
T̃ (t ) is another important quantitative measure of cumulative
inertia. From in vivo experiments we found that T (t ) increases
linearly in time t already traveled; see Fig. 4. The longer the
cargo remains on the microtubule, the larger the mean residual
time, so the inertia is accumulated. This behavior is drastically
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FIG. 3. Main panel: the experimental flight length probability
density f (L) (blue dots) fitted with Eq. (3) (red dashed curve)
with α = 1.5 ± 0.17, τ0 = 0.33 ± 0.1 s, and the average speed of
the cargo v = 0.8 μm/s. The flight length distribution obtained in
numerical simulations of the cargo dynamics using the Klumpp-
Lipowsky model with six dynein and six kinesin motors (orange
solid curve) decays exponentially for L > 1 μm. Parameters of the
simulations are given in Sec. VI. The inset shows the distribution
of experimental flight speed g(v) (blue solid curve) approximated
with the Burr density (red dashed curve) with parameters γ̃ = 0.57 ±
0.07, c̃ = 2.09 ± 0.09, and k̃ = 2.00 ± 0.34. The average speed of
the cargo is v = 0.8 μm/s.

different to memoryless systems where T (t ) is constant and
does not depend on the prehistory. The data can be well
explained by the conditional survival function for a random
attachment time T , �c(t, τ ) = Pr {T > t + τ |T > t}. In our
case,

�c(t, τ ) = �(t + τ )

�(t )
=

(
τ0 + t

τ0 + t + τ

)α

(4)

is an increasing function of time t already spent on the mi-
crotubule for a fixed τ . The behavior of �c(t, τ ) is illustrated
in the inset of Fig. 4. The mean residual time T (t ) can be
obtained as [30]

T (t ) =
∫ ∞

0
�c(t, τ )dτ = τ0 + t

α − 1
. (5)

We found a good agreement between experimental mean
residual time T (t ) and Eq. (5) with τ0 = 0.24 ± 0.1 and the
anomalous exponent α = 1.8 ± 0.17, Fig. 4. Notice that the
values of anomalous exponents obtained by fitting experimen-
tal data α = 1.6 ± 0.17 in Fig. 2, α = 1.5 ± 0.17 in Fig. 3,
and α = 1.8 ± 0.17 in Fig. 4 agree with each other within the
error bars. This cumulative inertia with 1 < α < 2 explains
the dramatic increases of the traveled distance typical for
Lévy walk. Since this is a non-Markovian effect with memory,
our explanation of anomalous long distance transport is com-
pletely different from the idea of memoryless self-reinforced
directionality [21] when the probability P (L) of traveling in
some direction grows with the distance L already traveled.
This probability can be obtained in terms of the conditional
survival function �c(t, τ ) as P (L) = �c(L/v, τ ).
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FIG. 4. Main panel: the experimental mean residual time T̄ of
flights (blue dots) linearly increases (notice logarithmic scales on
both the horizontal and vertical axes) with the time t already traveled.
The theoretical prediction Eq. (5) with parameters τ0 = 0.24 ± 0.1 s
and α = 1.8 ± 0.17 (red dashed curve) is in good agreement with the
experiment. Inset: illustration of the increasing conditional survival
function �c(t, τ ) given by Eq. (4) with τ0 = 0.2 s, α = 1.8, and
τ = 0.1 s.

III. MICROSCOPIC MECHANISM FOR THE
EMERGENCE OF THE DECREASING MESOSCOPIC

DETACHMENT RATE

The question arises: what is the microscopic mechanism of
the decreasing mesoscopic detachment rate γ (τ )? A first in-
sight could be obtained from a classical microscopic Klumpp-
Lipowsky model [9]. Note that the authors of Ref. [9] did
not consider this time-dependent rate. Instead, they found the
constant effective unbinding rate.

Consider the cargo which is pulled by multiple motors. We
assume that initially the cargo attaches to the microtubule with
a single motor. As the cargo moves along the microtubule,
the number of engaged motors N (t ) varies from 1 to N̄ .
Motors attach to the microtubule and detach from it with
effective microscopic rates πn and εn (n is the number of
engaged motors). We define the random detachment time T

as the time when all active motors together with the cargo
detach from the microtubule. In other words we have a random
walk in the space of the number of engaged motors. In
order to obtain the effective detachment rate γ (τ ), one can
define the survival function �(τ ) of the cargo to remain on
the microtubule as the probability �(τ ) = Pr{T > τ } = 1 −
Pr{N (τ ) = 0|N (0) = 1} [9]. The effective detachment rate is
defined as [31]

γ (τ ) = −� ′(τ )/�(τ ). (6)

The function �(τ ) can be written in terms of the probability
distribution of the first passage time T from the cargo state
with one engaged motor at time zero to the cargo state with
zero engaged motors:

F (τ ) = Pr {T < τ } (7)
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as

�(τ ) = 1 − F (τ ). (8)

To find the distribution function F (τ ) one can introduce the
transition probability [9]

Pn,0(τ ) = Pr {N (τ ) = 0|N (0) = n}. (9)

Define F (τ ) as

F (τ ) = P1,0(τ ), (10)

where P1,0(τ ) is the transition probability from the cargo
state with one engaged motor to the state with zero engaged
motors. Pn,0(τ ) obey the system of the backward Kolmogorov
equations [31]:

dPn,0(t )

dt
= −(εn + πn)Pn,0(t ) + εnPn−1,0(t ) + πnPn+1,0(t ),

(11)

with the initial conditions Pn,0(0) = 0 for 2 � n �
N̄ and P0,0(t ) = 1 (n = 0 is the absorbing state). Here
εn and πn are the unbinding and binding rates. One can solve
these equations and find the transition probability P1,0(τ ). It
follows from Eqs. (6) and (8) that the effective detachment
rate is

γ (τ ) = P ′
1,0(τ )

1 − P1,0(τ )
. (12)

This mesoscopic detachment rate is essentially different from
the effective constant unbinding rate obtained within the
Klumpp-Lipowsky model in Ref. [9] from equilibrium condi-
tions. Our purpose is to show that the rate γ (τ ) is a decreasing
function of the running time τ . It means that the longer a cargo
moves along the microtubule, the smaller is the probability
that it will detach and switch the direction in the next time
interval (a cumulative inertia effect). Numerical modeling
confirms that γ is a decreasing function of τ on a certain time
scale (see the orange solid curve in the inset of Fig. 2).

In vitro experimental data indicates that adding just one
extra motor increases cargo run lengths by at least one order of
magnitude compared to the distance traveled by a single motor
[8]. To understand intuitively the reason why γ (τ ) decreases
with the flight time τ , consider the first event of attachment of
a cargo complex with one motor. Initially the rate γ (0) = ε1.
Note that this defines the microscopic time scale 1/ε1. In turn,
the mesoscopic time scale is given by 〈T 〉 = ∫ ∞

0 τ�(τ )dτ ,
〈T 〉 � 1/ε1. If the second motor attaches before the first
motor detaches, the load is shared between two motors and
the detachment rate ε2 decreases, ε2 < ε1. As a result of
this stochastic dynamics, the number of participating motors
increases and therefore the detachment probability of the
cargo decreases with the flight time. Cumulative inertia occurs
due to multiple attachment and reattachment of motors before
the cargo finally detaches from the microtubule. This leads
to a dramatic increase of the traveled distance due to the
directional persistence [8].

We consider the cargo pulled by two motors N̄ = 2 and
show how the essential improvement of travel distance occurs.
The backward Kolmogorov equations (11) take the form

dP2,0(t )

dt
= −ε2P2,0(t ) + ε2P1,0(t ), (13)

dP1,0(t )

dt
= −(π1 + ε1)P1,0(t ) + π1P2,0(t ) + ε1, (14)

since π2 = 0. Solving the above equations with the initial
conditions P1,0(0) = P2,0(0) = 0, we find the cargo survival
function �(t ) = 1 − P1,0(t ):

�(t ) = p1e
−k1t + p2e

−k2t , (15)

where

p1 = ε1

k2

(
k2 − ε2

k2 − k1

)
, p2 = ε1

k1

(
ε2 − k1

k2 − k1

)
. (16)

Here two real eigenvalues k1 and k2 (k1 < k2) are the solution
of the quadratic equation

k2 − (π1 + ε1 + ε2)k + ε1ε2 = 0. (17)

Since

p1 + p2 = 1, (18)

the survival function (15) has an interesting probabilistic
interpretation as long as ε2 − k1 > 0 and k2 − ε2 > 0 (both p1

and p2 are positive). The cargo movement can be interpreted
as one that involves a mixed population of two motors with
different properties. The first motor has a probability p1 to be
engaged and it has the exponential density of dwelling time
with the rate k1. p2 is the probability of engagement for the
second type of motor with the effective detachment rate k2. In
this case the rate γ (τ ) defined by (12) is always a decreasing
function of running time τ :

γ (τ ) = p1k1e
−k1τ + p2k2e

−k2τ

p1e−k1τ + p2e−k2τ
. (19)

This explains the dramatic increase of running length of a
cargo with two motors and non-Markovian nature of cargo
movement. The detachment rate γ (τ ) takes the maximum
value at τ = 0:

γ (0) = p1k1 + p2k2 = ε1. (20)

In the long-time limit, the detachment rate γ (τ ) tends to the
constant value k1 such that k1 < ε1. This explains the dramatic
increase of running length of a cargo with two motors and the
non-Markovian nature of cargo movement. Our numerical re-
sults support this idea and show a decreasing detachment rate
γ (inset Fig. 2). Note that the empirical power-law survival
function can be approximated with the survival function in the
form of the linear combination of exponents corresponding to
the Klumpp-Lipowsky model (Fig. 2).

The survival function Eq. (15) has an interesting bio-
logical interpretation. The cargo movement can be viewed
as one that involves a mixed population of two motors
with different properties. If we extend this idea for a het-
erogeneous population of motors for which the rates k

are gamma distributed with the probability density func-
tion f (k) = τ0k

α−1e−τ0k/�(α), the effective survival function
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takes the form �(τ ) = ∫ ∞
0 e−kτ f (k)dk = (1 + τ/τ0)−α con-

sistent with Eq. (1).

IV. NON-MARKOVIAN DYNAMICS OF
CARGO: SUPERDIFFUSION

Our next aim is to provide a theoretical link between the
empirical mesoscopic detachment rate and the experimental
Lévy-walk-like trajectories. The mesoscopic detachment rate
Eq. (2) with the anomalous exponent 1 < α < 2 applied in
Eq. (21) allows us to explain the emergence of Lévy walk
as a result of anomalous cumulative inertia phenomena. We
obtain the mean-squared displacement (MSD) which exhibits
sub-ballistic superdiffusive behavior 〈x2(t )〉 ∼ t3−α . For Lévy
walks with 1 < α < 2 the ensemble and time-averaged MSDs
differ only by a factor of 1/(α − 1) [32–34].

We define the probability density function ξ (t, x, ϕ, τ )
which gives the probability to find a cargo at point x = (x, y)
at time t that moves with the speed v in the direction θ =
(cos ϕ, sin ϕ) and having started the move a time τ ago. Here
ϕ is the angle between the direction of movement θ and the x

axis. We assume that as long as the cargo detaches from the
microtubule it reattaches to another microtubule and thereby
changes the direction of movement. The governing equation
for ξ (t, x, ϕ, τ ) takes the form [35]

∂ξ

∂t
+ vθ·∇ξ + ∂ξ

∂τ
= −γ (τ )ξ, (21)

with the boundary condition

ξ (t, x, ϕ, 0) =
∫ t

0
γ (τ )

∫ π

−π

R(ϕ − ϕ′)ξ (t, x, ϕ′, τ )dϕ′dτ,

(22)

where R(ϕ − ϕ′) is the probability density of the re-
orientation from ϕ′ to ϕ such that

∫ π

−π
R(u)du = 1. In

Ref. [21] the flights were statistically isotropic with R(u) =
1/2π . In our experiments, we observe quasi one-dimensional
trajectories (Fig. 1) for which the angle takes only two values
[36].

The aim of this section is to obtain the non-Markovian
master equation for the probability density:

p(t, x, ϕ) =
∫ t

0
ξ (t, x, ϕ, τ )dτ, (23)

where the ξ is the structural density. We assume that at the
initial time t = 0 cargo has a zero running time

ξ (t, x, ϕ, 0) = p0(t, x, ϕ)δ(τ ), (24)

where p0(t, x, ϕ) is the initial density. The density p(t, x, ϕ)
can be found by differentiating (23) with respect to time t :

∂p

∂t
+ vθ · ∇p = −i(t, x, ϕ) + j (t, x, ϕ), (25)

where v is the cargo speed and θ = [cos(ϕ), sin(ϕ)] is the
direction of the cargo’s movement. The switching terms are

i(t, x, ϕ) =
∫ t

0
γ (τ )ξ (t, x, ϕ, τ )dτ, (26)

j (t, x, ϕ) = ξ (t, x, ϕ, 0)

=
∫ t

0

∫ π

−π

R(ϕ − ϕ′)γ (τ )ξ (t, x, ϕ′, τ )dϕ′dτ. (27)

By using the method of characteristics we find for τ < t :

ξ (t, x, ϕ, τ ) = ξ (t − τ, x−vθτ, ϕ, 0)e− ∫ τ

0 γ (s)ds . (28)

The exponential factor in the above formula is the survival
function:

�(t ) = e− ∫ t

0 γ (s)ds . (29)

To obtain i(t, x, ϕ), we use the Fourier-Laplace transform:

ˆ̃i(s, k, ϕ) =
∫
R2

∫ ∞

0
i(t, x, ϕ)eik·x−st dt dx, (30)

ˆ̃p(s, k, ϕ) =
∫
R2

∫ ∞

0
p(t, x, ϕ)eik·x−st dt dx. (31)

We find

ˆ̃i(s, k, ϕ) = K̃ (s − ivk · θ ) ˆ̃p(s, k, ϕ), (32)

where K̃ (s) = ψ̃ (s)/�̃(s). Finally we obtain the expressions
for the switching terms:

i(t, x, ϕ) =
∫ t

0
K (s)p(t − s, x − vθs, ϕ)ds, (33)

j (t, x, ϕ) =
∫ π

−π

R(ϕ − ϕ′)i(t, x, ϕ′)dϕ′. (34)

The main advantage of the present derivation is that it can be
easily extended for the nonlinear case.

Superdiffusive equations can be obtained for the case when
the detachment rate γ (τ ) can be approximated by the follow-
ing rate:

γ (τ ) = α

τ0 + τ
, 1 < α < 2. (35)

The rate (35) leads to a power-law (Pareto) survival function:

�(τ ) =
[

τ0

τ0 + τ

]α

(36)

and corresponding running time PDF:

ψ (τ ) = ατα
0

(τ0 + τ )1+α
. (37)

The Laplace transform can be written in terms of the incom-
plete gamma function �(a, b) = ∫ ∞

b
ta−1e−t dt as

ψ̃ (s) = α(τ0s)αeτ0s�(−α, τ0s). (38)

In the long-time limit as s → 0, we have

�(−α, τ0s) = −�(1 − α)

α
+ (τ0s)−αα−1 + (τ0s)1−α

1 − α
+ · · · .

(39)
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For 1 < α < 2, using �(−α) = �(2−α)
α(α−1) we obtain

ψ̃ (s) � 1 − τ0s

α − 1
+ �(2 − α)(τ0s)α

(α − 1)
, s → 0 (40)

or

ψ̃ (s) � 1 − T s + �(2 − α)τα−1
0 T sα, (41)

where T = τ0(α − 1)−1 is the mean value of the random
running time T . Then

K̃ (s) = sψ̃ (s)

1 − ψ̃ (s)
� 1

T
(1 + �(2 − α)(τ0s)α−1)

as s → 0. Using (32) we write the Fourier-Laplace transform
of i(t, x, ϕ) as

ˆ̃i = 1

T

(
1 + �(2 − α)τα−1

0 (s − ivk · θ )α−1) ˆ̃p. (42)

The switching term i(t, x, ϕ) can be written as [37]

i = 1

T

[
1 + �(2 − α)τα−1

0

(
∂

∂t
− vθ · ∇

)α−1
]
p, (43)

where the fractional material derivative ( ∂
∂t

− vθ · ∇)
α−1

of
order α − 1 is defined by their Fourier-Laplace transforms

LF
{(

∂

∂t
− vθ · ∇

)α−1

p

}
= (s − ivk · θ )α−1p̃(s, k, ϕ).

(44)

Taking the Laplace transform of Eq. (25) and substituting the
Laplace transform of Eq. (43) into it [using Eq. (34)] and
Eq. (42), we solve the equation for p̃. Then, differentiating
p̃ twice and taking the inverse Laplace transform, we find
the mean-squared displacement 〈x2(t )〉. For the isotropic case
with the uniform angle distribution R(u) = 1/2π (Granick
data [21]) or quasi-one-dimensional trajectories (our data)
the mean-squared displacement exhibits sub-ballistic super-
diffusive behavior

〈x2(t )〉 ∼ t3−α, 1 < α < 2. (45)

In Fig. 5 we show the time-averaged mean-squared dis-
placement calculated along single experimental trajectories
(corrected for the drift) which was also averaged over many
trajectories. A clear power-law behavior with the exponent
1.51 ± 0.17 is found which is consistent with the Lévy walk
behavior and with the behavior of the detachment rate and
survival functions.

V. EXPERIMENTAL METHODS AND
ANALYSIS OF TRAJECTORIES

Intracellular vesicles of U2OS (human bone osteosarcome
epithelial) and RPE (retinal pigment epithelial) cells were
imaged using phase contrast microscopy and tracked with
Polyparticle Tracker software [38]. The cells were grown in
DMEM (Sigma Life Science) and 10% FBS (HyClone) and
incubated for 48 h at 37 ◦C in 8% CO2 on 35 mm glass-
bottomed Ibidi dishes. Before imaging, the cells were moved
to a live-imaging media. The live-cell imaging was done using
an inverted Olympus IX71 with an Olympus 100 × /1.35 oil

10-1 100 101

Time (s)

10-3

10-2

10-1

100

101

102

 t1.5104

FIG. 5. Anomalous behavior of the time-averaged mean-squared
displacement for experimental trajectories in RPE cell (corrected for
the drift and averaged over many trajectories). The dashed curve
represents the power-law function with the exponent 1.5 ± 0.17.

PH3 objective and 1.6× zoom. A QuantEM 512SC CCD
Camera and Cool LED pE-100 light source was used for the
continuous imaging of U2OS cells and a CoolSNAP HQ2 was
used for the RPE cells. The video was taken with 30 ms or
98.5 ms exposure times, while the cells were kept at 37◦ in
atmospheric CO2 levels.

After tracking each vesicle’s path, only those with maxi-
mum displacement greater than 1 μm were chosen. Our aim
was to filter those vesicles that are involved in active transport
along microtubules. For this reason, we use the time-averaged
mean-square displacements (MSDs) for single vesicle
trajectories:

〈x2(mδt )〉 = 1

N − m

N−m∑
i=1

[x(ti + mδt ) − x(ti )]
2, (46)

where x = (x, y) is the vesicle coordinate and the video
contains N snapshots at increments of δt . The total time of a
data set is then T = (N − 1)δt and m = 1, 2, . . . , N − 1. Lag
times are defined as the set of possible mδt within the data set.
Trajectories with mean-square displacements (MSDs) close
to t2 (active transport) were analyzed [39]. The lower limit
for the MSD was balanced between sufficient statistics to
produce good fits and its proximity to t2 proportionality.
These criteria were applied to restrict analysis due to the noisy
background of vesicles engaging in motion differing from
directed transport on microtubules.

To measure the turning times of the vesicles, an angular
threshold method was used in conjunction with a distance
threshold. In a set of N points, there will be N − 2 angles
characterizing the direction of the path and for three arbitrary
data points, i, i + 1, and i + 2, the angle deviation of the path
was calculated by [19]

θi+1 = arccos

(
xi→(i+1) · x(i+1)→(i+2)

|xi→(i+1)||x(i+1)→(i+2)|
)

. (47)
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FIG. 6. Position of a tracked particle path segmented using
θmax = 45◦. Blue dots with frame numbers mark the path. The red
line indicates the new segmented path. The blue star marks the start
position and the red star marks the end position.

If θi+1 > θmax, the path was deemed to have changed di-
rection. Additionally, if the tracked vesicle had not moved
greater than 10% of the length of a pixel, during the turn,
the path was deemed to not have changed direction. This
threshold was to ensure that stationary or completely detached
vesicles, that move diffusively, do not add false runs to the
statistics. In order to ensure results were not dependent on
the arbitrary value of θmax, a set of threshold angles were
tested ranging from 5◦ to 90◦ in 5◦ increments. We found
θmax = 45◦ to be optimal. With such an angular threshold, we
have a good quality of the trajectory segmentation as shown in
Fig. 6.

VI. NUMERICAL MODELING

In experimental trajectories we found retrograde (towards
the cell center) and anterograde (away from the cell center)
movement which suggests that vesicles are driven by both
kinesins and dyneins. However, we observe no long pauses
between retrograde and anterograde movement (Fig. 1) and
conclude that it is unlikely that kinesins and dyneins were
engaged in a tug of war [15,16]. Instead, changes of the
direction could be triggered by some regulatory mechanism
which remains poorly understood [17,18].

To model the multimotor cargo transport we consider two
groups of kinesin and dynein motors. Only kinesins or dyneins
are engaged in cargo movement at any time. There are some
indications (although still debated in the literature) that motors
are loaded on the cargo in pairs [40]. We suppose that there
is an equal number of kinesins and dyneins. The groups can
change after the number of engaged motors reaches zero and
the cargo detaches from the microtubules. We assume that
initially the cargo attaches to the microtubule with a single
kinesin or dynein motor and moves along it pulled by N (t )
motors of one polarity. The number of engaged motors N (t )
varies from 1 to N̄ . The motors detach and reattach with rates
εn and πn. It is assumed that all motors equally share the
external load.

The number of kinesins and dyneins decreases and in-
creases with the rates εn and πn given by [41]

εn = nεe
Fv
nFd , πn = π (N̄ − n), (48)

where Fv is the force acting on the cargo which depends
on its velocity v, Fd is the corresponding detachment force
for kinesin or dynein, π is the binding constant for a single
kinesin or dynein motor, and ε is their zero-load unbinding
rate. The values of π , ε, and N̄ were adjusted to match the
experimental data.

The cargo pulled by n motors has the velocity

v(Fv ) = v

(
1 − Fv

nFs

)
, (49)

where Fs is the motor stall force and v is the load-free velocity.
The force Fv which is acting on the cargo of radius r due to
viscous resistance also depends on the velocity of the cargo
Fv = 6πηrv. Substituting this into the above expression and
solving for the velocity, the consistent expression for the
velocity is [41]

v(Fv ) = v

1 + (6πηrv)/(nFs )
. (50)

In our experiment, the typical radius of the lipid bound
vesicles was 0.5 μm. The cytoplasm is estimated to be 1000
times more viscous than the buffer [42], η = 0.89 Pa s. Below
we give the set of parameters used in simulations shown in
Fig. 2 in the main text. We have used parameters for kinesins
and dyneins from Ref. [43]. For kinesins: v = 1 μm/s,
π = 1 s−1, ε = 2 s−1, Fd = 4 pN, and Fs = 5 pN. For
dyneins: v = 1 μm/s, π = 1 s−1, ε = 3 s−1, Fd = 0.87 pN,
and Fs = 1.25 pN.

VII. DISCUSSION AND CONCLUSION

In summary, we studied experimentally the non-Markovian
anomalous multimotor intracellular transport of cargoes in-
side cells. We directly measured the mesoscopic detachment
rate of cargoes from microtubules and demonstrated that
the origin of the anomalous non-Markovian behavior is the
cumulative inertia phenomenon. We provided evidence for
this phenomenon in both bone and retina epithelial cells,
but it is expected to occur in all cell types that use dyneins
and kinesins to transport cargoes along microtubules. We
proposed a mesoscopic model which explains the emergence
of memory and non-Markovian behavior in the intracellular
cargo transport on a mesoscopic scale. We also demonstrated
how this non-Markovian behavior emerged from a Markovian
memoryless dynamics of multiple motors on a microscopic
scale. At the same time we note that the microscopic model
is inconvenient since it has multiple parameters which require
difficult fine-tuning. And, more importantly, almost all param-
eters in the microscopic model are unknown in vivo. There is
no experimental technique to measure them. On the contrary,
our mesoscopic model is computationally cheap and has only
two parameters which we measure directly in the experiment.
We believe that our model provides a complementary descrip-
tion of the intracellular transport on a mesoscopic scale that
is better able to model the experimentally observed memory
effects.
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The impact of our work on the field of intracellular trans-
port will be threefold: first, we experimentally show the
non-Markovian nature of intracellular transport and memory
effects on a mesoscopic scale. Secondly, our results settle
the controversy in the field of intracellular transport (see the
work of Granick et al. [21]) about memoryless Markovian
dynamics on a microscopic scale and non-Markovian behav-
ior and memory effects on a mesoscopic scale. Thirdly, with
our work we are shifting the paradigm of how the single-
particle tracking experiments could be analyzed by introduc-
ing several mesoscopic statistical quantities, such as the meso-
scopic detachment rate, the survival function, and the mean
residual time to remain on the microtubule. We believe that
these quantities are better for a description of the long-time
properties of intracellular transport than the traditionally used
mean-squared displacements along single trajectories. What

is important is that we show that these quantities are experi-
mentally measurable, can be predicted, and can be modeled in
a self-consistent manner (improving our confidence in the ro-
bustness of our analysis). Improved non-Markovian modeling
will lead to more accurate quantitative analysis of the kinetics
of a huge range of active transport in cellular physiology.
Such transport impacts on a vast range of cellular processes
and their diseased states, e.g., motor neuron disease and
cancer.
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