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Self-reinforcing directionality generates truncated Lévy walks without the power-law assumption

Daniel Han ,1 Marco A. A. da Silva ,2 Nickolay Korabel ,1 and Sergei Fedotov1,*

1Department of Mathematics, University of Manchester M13 9PL, United Kingdom
2Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Ribeirão Preto 14040-900, Brazil

(Received 23 April 2020; revised 15 October 2020; accepted 22 January 2021; published 19 February 2021)

We introduce a persistent random walk model with finite velocity and self-reinforcing directionality, which
explains how exponentially distributed runs self-organize into truncated Lévy walks observed in active intra-
cellular transport by Chen et al. [Nature Mater., 14, 589 (2015)]. We derive the nonhomogeneous in space and
time, hyperbolic partial differential equation for the probability density function (PDF) of particle position. This
PDF exhibits a bimodal density (aggregation phenomena) in the superdiffusive regime, which is not observed in
classical linear hyperbolic and Lévy walk models. We find the exact solutions for the first and second moments
and criteria for the transition to superdiffusion.
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I. INTRODUCTION

Transport in biology is crucial on multiple scales to main-
tain life and deviations from normal movement are hallmarks
of disease and ageing [1,2]. From organisms to subcellular
molecules, their motion is usually described by persistent
random walks with finite velocities (run and tumble models)
[3–7]. The preference for these velocity jump models over
space jump random walks arises due to the physical con-
straints of organisms not instantaneously jumping in space
and an inertial resistance to changes in direction. In recent
years, Lévy walks [8] attracted attention in modeling move-
ment patterns of living things [9], from subcellular [10–12]
to organism [13–15] scales. Until now, Lévy walks have been
mostly described by coupled continuous time random walks
[8], various fractional partial differential equations (PDEs)
[16–22], and integrodifferential equations [23,24]. These ap-
proaches require power-law distributed running times with
divergent first and second moments as an ab initio assumption.
However, in many cases this assumption is difficult to justify,
leading to ongoing discussions about the origin of power-law
distributed runs, the Levy walk observed in nature [9,25], and
the Lévy foraging hypothesis [26,27].

Experiments exhibiting Lévy-like motion cannot be mod-
eled with pure power-law jump or running time distributions
due to finite limits in physical systems [28]. So theoretically,
power-law distributions are often truncated [29] or exponen-
tially tempered [30]. Specifically for active cargo transport
in cells, it was discovered that the motion is composed of
multiple short runs that self-organize into longer truncated
power-law distributed unidirectional flights (truncated Lévy
walks) [10]. Explanations for this phenomenon have been
attempted in terms of self-reinforcing directionality generated
by cooperative motor protein transport [10]. Yet, the question
remains, can a persistent random walk model generate su-
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perdiffusion without power-law distributed runs through the
self-organization of exponentially distributed runs?

In this paper, we propose a spatially and temporally in-
homogeneous model that generates exponentially truncated
Lévy walks through self-reinforced directionality without the
standard assumption of power-law distributed runs. This expo-
nential truncation is not directly introduced but rather arises
naturally from the same microscopic mechanism that gener-
ates the power-law distribution. Finally, simulated densities of
unidirectional flight lengths from this model show excellent
agreement with truncated power-law distributions observed
in experiments [10]. It is worth noting that there are a few
examples where the power-law assumption has not been used
as a starting point: superdiffusion of ultracold atoms [31] and
a random walk driven by an ergodic Markov process with
switching [32].

II. SELF-REINFORCING DIRECTIONALITY

Consider a particle moving to the right and left in one
dimension with constant speed ν and exponentially distributed
running time with rate λ. In the standard alternating case,
the particle would change directions with probability 1. To
consider the instance when there is a probability that the
particle continues in the same direction as the previous run,
we introduce the transition probability matrix [33],

Q =
[

q+ 1 − q+
1 − q− q−

]
, (1)

where q+ is the conditional transition probability that the
particle will continue in the positive direction given it was
moving in the positive direction before. Similarly, q− corre-
sponds to the particle moving in the negative direction. The
standard alternating case corresponds to q+ = q− = 0.

In order to model self-reinforcing directionality using the
matrix Q, we introduce relative times t+/t and t−/t that the
particle moves in the positive and negative directions during
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FIG. 1. Two realizations of the random walk with self-
reinforcing directionality using the transition matrix (1) with q±(x, t )
from (2). The continuous trajectories (black solid lines) are labeled
according to the persistence probability w = 0.85 and w = 0.5. The
black dots show the beginning and end of individual exponentially
distributed runs. A flight and run are annotated. The parameters are
ν = 1 and λ = 1. The trajectory with w = 0.85 has an initial velocity
ν and w = 0.5, −ν. The enlarged red dot shows the beginning of a
unidirectional flight at x∗ and t∗.

time t . The key point is to define the probabilities in (1) as

q± = w
t±

t
+ (1 − w)

t∓

t
. (2)

Here we introduce the persistence probability w, which
parametrizes the extent that changes of direction are affected
by relative times. If w = 1/2 then the transition probabilities
in both directions are the same: q+ = q− = 1/2. If w > 1/2
then the matrix Q has repetition compulsion properties: The
longer a particle spends moving in the one direction, the
greater the probability to maintain directionality. In other
words, the particle has a tendency to repeat its past behavior.
Not only does q± depend on the previous run, but also it
depends on the entire history of run directions and run times.
Figure 1 illustrates self-organization of individual runs into
long unidirectional flights.

Let us show that the conditional transition probabilities
(2) can be expressed in terms of particle position x = x0 +
ν[t+ − t−]. Since t = t+ + t−, the relative times can be
written as

t±

t
= 1

2

(
1 ± x − x0

νt

)
. (3)

Then substituting (3) into (2), we find that the probabilities q+
and q− depend on x and t ,

q±(x, t ) = 1

2

[
1 ± α

x − x0

νt

]
with α = 2w − 1. (4)

Since our random walker is moving with finite speed ν, the
relation (x − x0)/νt � 1 must hold. Once again, the formula
(4) shows self-reinforcing directionality since if α > 0 (w >

1/2) then the transition probability q+(x, t ) is an increasing
function of particle position x and the opposite for q−(x, t ).
Here we should emphasize that the probabilities q± depend
not only on the direction of the previous run, but also on
the full history of run directions which determine its current

position, x. So x > x0 means that the positively directed runs
outlived those in the negative direction. That is why this can be
referred to as self-reinforcing directionality. As we will show
below, transition probabilities (4) give us a new methodology
to model truncated Lévy walk motion without the standard
requirement of power-law distributed runs.

The equations for probability density functions (PDFs) of
particles moving right (+) and left (−), p±(x, t ) can be written
in terms of transition matrix Q as[

p+(x, t + �t )
p−(x, t + �t )

]
= (1 − λ �t )

[
p+(x − ν �t, t )
p−(x + ν �t, t )

]

+QT

[
p+(x, t )
p−(x, t )

]
λ �t . (5)

Rearranging and taking the limit �t → 0, we can write the
equations for p±(x, t ) as

∂ p±
∂t

± ν
∂ p±
∂x

= −λ[1 − q±(x, t )]p± + λ[1 − q∓(x, t )]p∓.

(6)
Note these equations (6) can be rewritten in terms of space
and time dependent switching rates,

λ±(x, t ) = λ[1 − q±(x, t )]. (7)

These switching rates will be used to show how the ex-
ponentially truncated power-law distribution of flights arise
from exponentially distributed runs. Defining total density and
flux as

p(x, t ) = p+ + p−, J (x, t ) = νp+ − νp−,

and using standard methods [6,7,34] with (4), we can obtain
the system of equations,

∂ p

∂t
= −∂J

∂x
,

∂J

∂t
= −ν2 ∂ p

∂x
− λ

(
J − α(x − x0)

t
p

)
. (8)

The initial conditions are

p(x, 0) = δ(x − x0), J (x, 0) = ν(2u − 1)δ(x − x0), (9)

where u ∈ [0, 1] is the probability that the initial velocity is
ν. Finally from (8), we can find the hyperbolic PDE with a
nonhomogeneous in space and time advection term,

∂2 p

∂t2
+ λ

∂ p

∂t
= ν2 ∂2 p

∂x2
− λα

t

∂[(x − x0)p]

∂x
, t > 0. (10)

The advection term of Eq. (10) is unconventional because
it depends on the initial position x0. Furthermore, if the initial
conditions are symmetric, u = 1/2 [see (9)], then the average
drift is zero. Clearly, (10) is a modification of the classical
telegraph or Cattaneo equation [7,34,35] with a time and space
dependent advection term. In what follows, we will show that
this additional term generates superdiffusion. In fact, a gener-
alized Cattaneo equation generating superdiffusion has been
formulated using the Riemann-Liouville fractional derivative
[16]. The advantage of Eq. (10) over fractional PDEs is that it
is far simpler and does not require integral operators in time.
The hyperbolic PDE (10) is the formulation of truncated Lévy
walks without integral operators [23]. In the diffusive limit,
when λ → ∞ and ν → ∞ such that ν2/λ is a constant, (10)
becomes the governing advection-diffusion equation for the
continuous approximation of the elephant random walk [36].
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It is interesting to note that the system of equations (6) with
transition rates (4) can be mapped to the hyperbolic model for
chemotaxis [37] with an unorthodox external stimulus S(x, t )
obeying the Hamilton-Jacobi equation for a free particle. In
terms of effective turning rates, λ± introduced in (7), that
depend on the gradient of external stimulus,

λ±(Sx ) = λ

2

[
1 ∓ 1

ν
Sx

]
, with S(x, t ) = α(x − x0)2

2t
.

Then the Hamilton-Jacobi equation for the external
stimulus is

∂S

∂t
+ 1

2α

(
∂S

∂x

)2

= 0. (11)

This provides insight into how the external stimulus S gen-
erates superdiffusion rather than the conventional ballistic
motion in chemotaxis.

Monte Carlo simulations of the random walk correspond-
ing to (10) are as follows:

(1) Set initial conditions x0 = 0 and t0 = 0. For initial ve-
locity draw a uniformly distributed random number U ∈ [0, 1)
if U < u then v0 = ν and otherwise v0 = −ν.

(2) Generate an exponentially distributed random time
T0 = −1/λ ln(1 − V ) where V is a uniformly distributed ran-
dom number in [0,1).

(3) Update position and time to x1 = x0 + v0T0, t1 = t0 +
T0, respectively. For updating velocity, draw a uniformly dis-
tributed random number W ∈ [0, 1), then

(a) If v0 = ν and W < q−(x1, t1) = 1/2 − α(x1/2νt1)
then v1 = −ν.

(b) If v0 = −ν and W < q+(x1, t1) = 1/2 +
α(x1/2νt1) then v1 = ν.
(4) Repeat steps 2 and 3 until tn = t0 + ∑n−1

i=0 Ti reaches
the end of the simulation time tend.

III. MOMENTS AND SUPERDIFFUSION

Now, we show that the variance for the underlying random
process x(t ) exhibits superdiffusive behavior: Var{x(t )} ∝ t2α

with 1/2 < α < 1. The moments of the random walk position,

μn(t ) =
∫ ∞

−∞
xn p(x, t )dx

can be found from (10) as

d2μn

dt2
− ν2n(n − 1)μn−2 + λ

dμn

dt
− λαn

t
μn = 0. (12)

Taking the Laplace transform and solving the resulting differ-
ential equations for the first and second moments using the
initial conditions,

μ1(0) = μ2(0) = 0

dμ1(0)

dt
= ν(2u − 1),

dμ2(0)

dt
= 0

derived from (9), we can obtain

μ̂1(s) = ν(2u − 1)s−1−α (s + λ)α−1,

μ̂2(s) = 2ν2

λ(2α − 1)
[s−1−2α (s + λ)2α−1 − s−2].
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FIG. 2. Mean squared displacements 〈x2(t )〉 = μ2(t ) from simu-
lated trajectories (data points) compared with the analytical solutions
(solid lines). Each pair is annotated with the simulation value of
w. Each simulation, contained N = 105 particles that ran for a
simulation time t = 104 with parameters u = 1, ν = 1, and λ = 1.
Diffusion (dotted line) 〈x2(t )〉 ∼ t and ballistic motion (dashed line)
〈x2(t )〉 ∼ t2 are also shown.

The inverse Laplace transform gives

μ1(t ) = ν(2u − 1)t 1F 1(1 − α, 2,−λt ),

μ2(t ) = 2ν2t

λ(2α − 1)
[1F 1(1 − 2α, 2,−λt ) − 1],

where 1F 1(a, b, z) is the Kummer confluent hypergeometric
function. In the long time limit (s → 0), we obtain

μ1(t ) � νλα−1(2u − 1)

�(α + 1)
tα, (13)

and

μ2(t ) �
{

2ν2

λ(1−2α) t, −1 < α < 1/2,
2ν2λ2α−2

(2α−1)�(2α+1) t
2α, 1/2 < α < 1.

(14)

Clearly, the random walk exhibits superdiffusive behavior for
1/2 < α < 1. The variance Var{x(t )} = μ2(t ) − μ1(t )2 is

Var{x(t )} �
{

2ν2

λ(1−2α) t, −1 < α < 1/2,

Aν2λ2α−2t2α, 1/2 < α < 1,
(15)

where A = 2
(2α−1)�(2α+1) − (2u−1)2

�2(α+1) . Figure 2 shows that re-
sults of Monte Carlo simulations are in perfect agreement with
the analytical solution of the second moment. This clearly
demonstrates the emergence of superdiffusion since for w <

3/4 (α < 1/2), μ2(t ) = 〈x2(t )〉 ∝ t , whereas 〈x2(t )〉 ∝ t2α

for w > 3/4 (α > 1/2).

IV. CONDITIONAL TRUNCATED POWER-LAW FLIGHT
DISTRIBUTION

In what follows, we show analytically how self-reinforcing
directionality generates a truncated Lévy walk with exponen-
tially tempered power-law distributed flights. Let us find the
conditional distribution of flights given the particle changes
direction at the position x∗ and time t∗ (illustrated in Fig. 1

022132-3



HAN, DA SILVA, KORABEL, AND FEDOTOV PHYSICAL REVIEW E 103, 022132 (2021)

100 102

10-1

100

1

FIG. 3. The survival function 	(τ ) of unidirectional flight run-
ning times τ , estimated using the nonparametric Kaplan-Meier
method from the simulation of N = 2 × 106 unidirectional flights
with w = 0.99, v = 1, λ = 1, t∗ = 2, and x∗ = 1. The conditional
survival function of flights from numerical simulations (blue crosses)
and the analytical truncated power-law conditional survival function
	+(τ |x∗, t∗) from (17) (blue line) show excellent correspondence.
The survival function of 	+(τ |x∗, t∗) without the exponential trun-
cation w = 1 is shown for comparisons (red dashed line).

where the particle changes velocity from −ν to ν). First, we
calculate the conditional survival function 	±(τ |x∗, t∗) for
flights moving in the positive (+) and negative (−) directions.
This function gives us the probability that the random duration
of a flight T is greater than τ . The rates λ± (7) define the
conditional switching rate along the particle trajectory starting
at position x∗ and time t∗ as λ±(τ |x∗, t∗) = λ[1 − q±(x∗ ±
ντ, t∗ + τ )]. If we rearrange using α = 2w − 1, then

λ±(τ |x∗, t∗) = λ(1 − w) + γ±
t∗ + τ

, (16)

where

γ± =
(

w − 1

2

)
λ
(

t∗ ∓ x∗
ν

)
.

Using this, we can find the conditional survival function by

	±(τ |x∗, t∗) = exp

(
−

∫ τ

0
λ±(s|x∗, t∗)ds

)
.

Then, we can see that the constant term in (16) produces an
exponential tempering factor and the term inversely propor-
tional to the running time τ and generates a power law with
exponent γ±. Explicitly, we can write

	±(τ |x∗, t∗) = e−(1−w)λτ
( t∗

t∗ + τ

)γ±
. (17)

The conditional distribution of flight lengths l = ντ is given
by: F±(l|x∗, t∗) = 1 − 	±(l/ν|x∗, t∗). Figure 3 shows excel-
lent correspondence between the numerical simulations and
the analytical formula (17) for 	+(τ |x∗, t∗).

Usually exponential truncation (tempering) is introduced
by simply multiplying the power-law jump or waiting time
densities by an exponential factor with an additional pa-
rameter, leading to tempered fractional calculus [30]. The
advantage of our model is that both exponential tempering and
power-law flight distribution are generated through a single
microscopic mechanism involving self-reinforced direction-
ality and the subsequent analysis of (10) is more convenient

100 101 102 103
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10-2

10-1

100

FIG. 4. The PDFs p(l ) (solid lines) of unidirectional flight
lengths l from the simulations of N = 105 particles with varying
w, t = 103, v = 1, and λ = 1.

than tempered fractional calculus. An interesting feature of
our model is that despite the exponential truncation of flights,
the variance (15) still exhibits superdiffusive behavior for
w = 0.99, v = 1, λ = 1, t∗ = 2).

Finally, we can obtain numerically the PDF p(l ) of flight
length l without the condition that flights begin at x∗ and t∗.
In the case of strong directionality as w → 1, p(l ) should ap-
proach a pure power law since the truncation length ν/λ(1 −
w) → ∞. Figure 4 confirms this and shows that, when w =
0.999, a power-law density is recovered for more than two
orders of magnitude. Next, we provide evidence that the
truncated power-law PDF shows excellent correspondence to
published data on unidirectional endosome flights.

V. EXPERIMENTAL EVIDENCE

Truncated Lévy walk behavior is observed experimen-
tally in intracellular transport, which arises from the self-
organization of exponentially distributed runs xi into unidi-
rectional flights, x f [10]. Here, we switch from l to x f to
avoid confusion between theoretical and experimental flights.
Until now, there had been no governing PDE-like (10) and
an underlying persistent random walk model to describe
this phenomenon. Experimentally, the authors [10] report
power-law tails in the flight-length density p(x f ) ∝ x−2

f .
Figure 5 demonstrates that numerical simulations of our
model are able to generate the power-law tails for flight-length
density and emulate the experimental data on the whole x f

scale using reasonable parameters. Furthermore, the parame-
ters of our model, such as persistence probability w or α, rate
λ, and speed ν can be easily found by comparing the exact
analytical formula of the second moment with experimental
mean squared displacements.

VI. BIMODAL DENSITIES AND TRANSITION FROM
DIFFUSIVE TO SUPERDIFFUSIVE REGIME

Surprisingly, our truncated Lévy walk model in the long
time limit leads to bimodal densities in the superdiffusive
regime (1/2 < α < 1). This phenomenon does not exist for
classical superdiffusive Lévy walks. Bimodal densities (Lam-
perti distributions) only appear in the ballistic regime for
Lévy walks with a divergent first moment for running times
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FIG. 5. The PDFs p(x f ) of unidirectional flight lengths, x f from
experimental measurements (crosses) taken from Ref. [10] and sim-
ulation of underlying random walk with w = 0.925 (solid black).
Each simulation had N = 105 particles running for t = 102 s with
ν = 1.2 μms−1 and λ = 1 s−1. The tail of the PDF was fitted with a
power-law (red dashed) p(x f ) ∝ x−γ

f with γ = 2.13.

[8,21,38–40]. In the superdiffusive case, the density for Lévy
walks is Gaussian in the central part with power-law tails [39].
This is completely different to densities for (10) (see Fig. 6).
Density peaks for p(x, t ) in (10) occur at |x| < νt . Figure 6
shows the emergence of a bimodal density for t = 102 and
w > wc, where wc = 3/4. The density p(x, t ) exhibits two
distinct long time behaviors: It is Gaussian for α < 1/2 (w <

wc) and bimodal for α > 1/2 (w > wc).
For −1 < α < 1/2 (0 < w < 3/4), the variance (15) cor-

responds to the diffusive regime with the effective diffusion
coefficient,

D = ν2

λ(1 − 2α)
. (18)

For alternating velocity random walks, the conventional dif-
fusion coefficient would be D0 = ν2/λ. As α → 1/2, the

-100 -50 0 50 100
x

0

0.005

0.01

0.015

0.02

0.025

p(
x,

t)

FIG. 6. The PDFs (solid lines) p(x, t ) for particle positions x at
the end of simulation time t = 102 for varying values of w. The
Gaussian solution (dashed line) is shown for w = 0.6. The param-
eters of simulation were N = 105 particles, u = 0.5, λ = 1, and
ν = 1. The initial density was p(x, 0) = δ(x).
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FIG. 7. Main. The PDF of particle positions p(x, t ) for simu-
lations of (10) at varying times with w = 0.8. Other parameters
are N = 105, u = 0.5, ν = 1, and λ = 1. Inset. From the same
simulation as the main figure we count the number of particles,
N (x > νt − ε) out of N = 105 that have position x > νt − ε with
ε varied among 0, 50, and 100. The maximum position possible
is x = νt .

effective diffusion coefficient tends to infinity, and this indi-
cates the transition from the diffusive to the superdiffusive
regime. For the long time limit of (10) in the diffusive regime
when ∂2 p/∂t2 becomes negligible, the solution is Gaussian,

p(x, t ) = (4πDt )−1/2 exp[−(x − μαtα )2/4Dt], (19)

where

μα = ν(2u − 1)λα−1/�(α + 1),

and D is defined in (18). Figure 6 shows the excellent agree-
ment between the numerical simulations and the Gaussian
solution for w = 0.6.

The bimodal distribution of p(x, t ) in Fig. 6 with peaks
close to the maximum position ±νt is reminiscent of the
δ function horns at x = ±νt (“chubchiks”) in Lévy walks
[39]. They too vary similarly with the parameter μ, which
determines the run time PDF ψ (t ) ∝ t−1−μ. For Lévy walks
in the superdiffusive case (1 < μ < 2), the region near the
initial position is Gaussian with the tails of the distribution
|x| > νt having the distribution p(x, t ) ∼ t/|x|1+μ. Although
our correlated random walk has similarities to Lévy walks, the
major difference in the asymptotic density is the continuous
distribution of the bimodal peaks at positions |x| < νt instead
of the chubchiks seen in Lévy walks at |x| = νt .

In essence, the chubchiks of Lévy walks appear due to the
group of particles that have been moving at the propagation
velocity for the entire time t and, thus, form a propagating
front. Intriguingly, these fronts also appear for our correlated
random walk but at very short times shown by Fig. 7. How-
ever, these propagating fronts decay exponentially with time,
whereas for Lévy walks they decay as t1−μ (1 < μ < 2). By
t = 30, the propagating front has completely “evaporated”
and the tail is now exponential with no trace of the original
front. This phenomenon is intuitive since particles performing
our correlated random walk take exponentially distributed
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runs, albeit in a persistent manner, but Lévy walks take power-
law distributed runs. Exponential decay of the fronts can be
seen in the inset of Fig. 7 where the number of particles N (·)
with position x > νt − ε is plotted as a function of time t .

The evaporation of the propagating front demonstrates
a nonequilibrium phase transition since the PDF shows
chubchiks for short times that decay into exponential tails
for long times. This shows the nonstationary nature of the
random walk generated by (10) and the transition from Lévy
walk-like behavior at short times to a completely novel
distribution for long times. Note that similar bimodal densi-
ties are observed in velocity random walks with interacting
particles [41,42].

VII. BIOLOGICAL ORIGINS

Now, the question remains: What is the underlying bio-
logical mechanism explaining self-reinforced directionality in
intracellular transport? To answer this question, we suggest
a simple illustration of the possible origin for self-reinforced
directionality. Let us consider endosomal motility, which is
governed by the adaptor complexes on its membranes, the
most notable being Rab GTPases [43]. These adaptors fa-
cilitate attachment to dynein and kinesin motors [44] and,
therefore, dictate the positioning and motility of endosomes
in the cell [43,45]. To simplify this vastly complex process,
consider that the endosome contains a number n− of adaptor
proteins that attach to kinesin leading to transport towards
the cell periphery. Similarly, n+ is the number of adaptor
proteins that attach to dynein and facilitate transport towards
the cell nucleus. Then, when an endosome happens to attach
to a microtubule, the simplest assumption about probabilities
q+ and q− in (1) would be q+ = n+/(n+ + n−) and q− =
n−/(n+ + n−). However, due to the complexity of endoso-
mal transport we can introduce a weight w ∈ [0, 1] such that
q± = wn±/(n+ + n−) + (1 − w)n∓/(n+ + n−).

From the very beginning of endocytosis until degradation,
endosomes undergo a maturation process, including the as-
sociation of proteins, such as Rab5 and PI(3)K [46]. Recent

work has shown that effectors of Rab5 display distinct spatial
densities [47] suggesting that n− and n+ are functions of
the time spent running towards t− or away t+ from the cell
center. So, we assume that n± = n0

± + at± with a being some
constant rate. The more an endosome moves in towards the
nucleus, the more n+ increases and vice versa. This rein-
forcement rule is similar to that of discrete reinforced random
walks [37,48]. Neglecting n0

±, this formulation is exactly what
leads to the repetition compulsion property in (2) since then
n−/(n+ + n−) = t−/t and n+/(n+ + n−) = t+/t .

VIII. CONCLUSION

In this paper, we developed a persistent random walk
model with finite velocity and self-reinforcing directionality
that generates superdiffusion without the standard assumption
of power-law distributed run times. A governing hyper-
bolic PDE (10) for particle probability density was derived
along with exact solutions for the first and second moments.
The theory is able to explain the experimentally observed
self-organization of exponentially distributed runs into unidi-
rectional flights leading to exponentially truncated Lévy walks
[10]. We showed excellent agreement between the density of
flight lengths from numerical simulations and the in vivo cargo
transport experiments. In the superdiffusive regime, numeri-
cal simulations of particle densities show bimodal densities
(aggregation), which is a new phenomenon not seen in the
classical linear hyperbolic or Lévy walk models. We believe
that our methodology can be used to model migrating cancer
cells [15,49], T-cell motility [50], human foraging [13], front
propagation phenomena [51], first passage time problems
[52,53], and viruses mobility inside cells [54].
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