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Abstract. This paper is concerned with a non-homogeneous in space and non-local in time
random walk model for anomalous subdiffusive transport of cells. Starting with a Markov model
involving a structured probability density function, we derive the non-local in time master equa-
tion and fractional equation for the probability of cell position. We derive the fractional Fokker-
Planck equation for the density of cells and apply this equation to the anomalous chemotaxis
problem. We show the structural instability of fractional subdiffusive equation with respect to
the partial variations of anomalous exponent. We find the criteria under which the anomalous
aggregation of cells takes place in the semi-infinite domain.
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1. Introduction

Random cell movement plays a very important role in embryonic morphogenesis, wound healing, cancer
cells proliferation, and many other physiological and pathological processes [34]. The microscopic theory
of the migration of cells and bacteria towards a favorable environment (chemotaxis) is based on random
walk models [8, 19, 31,32]. The “velocity-jump” models concern with self-propelled motion involving the
runs and tumbles, while “space-jump”models deal with the cells making jumps in space. Much of the
literature on the theoretical studies of cells motility has been concerned with Markov random walk models
(see, for example, [4,8]). However, the analysis of random movement of wild-type and mutated epithelial
cells shows the anomalous dynamics of cell migration [7] (see also [27]). Over the past few years there
have been several attempts to model non-Markovian anomalous cell transport involving subdiffusion and
superdiffusion [7, 9, 10, 12, 13, 17]. In this paper we shall deal with a non-Markovian “space-jump”model
that describes the non-homogeneous in space subdiffusive transport of cells.

1.1. Markov random walk model.

First let us consider a Markov model for random cell movement along one-dimensional lattice such that
all steps are of equal length 1. We define the probability

p(k, t) = Pr {X(t) = k} (1.1)
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that the position of cell X(t) is at point k ∈ Z at time t.We introduce at each point k the rate of jump to
the left µ(k) and the rate of jump to the right λ(k). This random walk is called a generalized birth-death
process [6]. The master equation for p(k, t) can be written as

∂p(k, t)

∂t
= λ(k − 1)p(k − 1, t) + µ(k + 1)p(k + 1, t)− (λ(k) + µ(k)) p(k, t). (1.2)

This model corresponds to the case when intervals between jumps at point k are exponentially distributed
with parameter λ(k) + µ(k). When the cell makes a jump from the position k, it jumps to the right with
probability λ(k)/(λ(k) + µ(k)) and to the left with the probability µ(k)/(λ(k) + µ(k)) [6].

The dependence of µ(k) and λ(k) on space can be introduced in different ways depending on how cells
sense the surrounding environment. For the local chemotaxis models, the rates λ(S(k)) and µ(S(k)) are
the functions of the local concentration of the chemotactic substance S(k). There exist several non-local
and barrier models that are different in terms of the dependence of rate functions on the chemotactic
substance [4,32]. For example, the rates µ(k) and λ(k) can depend on the concentration of the chemotactic
substance at neighbouring positions k − 1 and k + 1 as in (3.6). In the continuous limit, the master
equation (1.2) can be reduced to the classical advection-diffusion equation in which the cell flux involves
the standard diffusion term and the advection term due to chemotaxis.

If we consider only positive values of k, we need to implement boundary conditions at the point k = 1.
Here we assume that if cell hits the wall on the boundary, it is reflected with the probability 1 − χ and
absorbed by wall with the probability χ. Then one can write p(1, t+∆t) = (1−λ(1)∆t−µ(1)∆t)p(1, t)+
µ(1)(1− χ)p(1, t)∆t+ µ(2)p(2, t)∆t+ o(∆t). In the limit ∆t→ 0 we obtain

∂p(1, t)

∂t
= −χµ(1)p(1, t) + µ(2)p(2, t)− λ(1)p(1, t), (1.3)

where 0 ≤ χ ≤ 1.
Non-uniform stationary solution of master equation (1.2) can be interpreted as cell aggregation phe-

nomenon [32]. In particular, if there is no absorption on the boundary (χ = 0), the stationary solution
pst(k) can be easily found from (1.2) and (1.3). We obtain

pst(k) = pst(1)

k−1
∏

i=1

λ(i)

µ(i+ 1)
, k > 1, (1.4)

where

pst(1) =

(

1 +

∞
∑

k=2

k−1
∏

i=1

λ(i)

µ(i+ 1)

)−1

provided the series is convergent.

1.2. Anomalous random walks

It is tempting to generalize the master equation (1.2) for the anomalous case by replacing the time
derivative with the Caputo derivative [2, 24,26]

∂νp (k, t)

∂tν
=

1

Γ (1− ν)

∫ t

0

∂p (k, u)

∂u

du

(t− u)1−ν
(1.5)

as it is done in [33] for a fractional linear birth–death process. Here ν is the anomalous exponent:
0 < ν < 1. Although this generalization is very attractive from a mathematical point of view, it is
not appropriate for a non-homogeneous medium for which the exponent ν depends on k. The non-
homogeneous fractional equation for p(k, t) can be written as

∂p(k, t)

∂t
= a(k−1)D

1−ν(k−1)
t p(k−1, t)+ b(k+1)D

1−ν(k+1)
t p(k+1, t)− (a(k)+ b(k))D

1−ν(k)
t p(k, t), (1.6)
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where D
1−ν(k)
t is the Riemann-Liouville fractional derivative with varying order

D
1−ν(k)
t p (k, t) =

1

Γ (ν(k))

∂

∂t

∫ t

0

p (k, u) du

(t− u)1−ν(k)
. (1.7)

Here ν(k) is the anomalous exponent corresponding to the site k and the anomalous rate coefficients a(k)
and b(k) have to be determined, see (3.12). The crucial point here is that the anomalous exponent ν(k)
depends on the site k. The fractional equation (1.6) cannot be rewritten in terms of Caputo derivative
(1.5). It turns out that even small non-homogeneous variations of the exponent ν lead to a drastic
change of p(k, t) in the limit t → ∞ [14]. It means that the subdiffusive fractional equations with
constant anomalous exponent ν are not structurally stable. If, for example, the point k = M has the
property that ν(M) < ν(k) for all k 6=M and χ = 0, one can find that

p(k, t) → 0, p(M, t) → 1, 1 ≤ k ≤ N (1.8)

as t→ ∞. This result has been interpreted as anomalous aggregation of cells at the point k =M [12]. In
this paper we shall find the conditions for anomalous aggregation for the semi-infinite interval 1 ≤ k <∞.
It should also be noted that non-homogeneous variations of the exponent ν destroy the Gibbs-Boltzmann
distribution as a long time limit of the fractional Fokker-Planck equation [14]. Of course, for the constant
value of ν, the formulation in terms of Caputo or Riemann-Liouville operators are equivalent, as long as
proper care is taken of the initial values [2, 24,26].

1.3. Anomalous diffusion with reaction.

Another extension of traditional Markov random walks models is non-Markovian theory of anomalous
transport with reaction dynamics [11, 28, 30, 35–37]. In particular, this theory has been used for the
analysis of the proliferation and migration dichotomy of cancer cells [9,10,13]. In this paper we consider
the inhibition of cell growth by anticancer therapeutic agents. To model this inhibition we introduce
the random death process with non-uniform death rate parameter. We assume that during time interval
(t, t+∆t) at point k each cell has a chance θ(k)∆t + o(∆t) of dying, where θ(k) is the death rate [20].
It is easy to take into account this process for Markov models. We just add the term −θ(k)p(k, t) to the
right hand side of the master equation (1.2). On the contrary, the anomalous master equation involves
a non-trivial combination of transport and death kinetic terms because of memory effects [1, 18, 28]. In
this paper we shall derive the following fractional equation

∂p(k, t)

∂t
= a(k − 1)e−θ(k−1)tD

1−ν(k−1)
t

[

p(k − 1, t)eθ(k−1)t
]

+b(k + 1)e−θ(k+1)tD
1−ν(k+1)
t

[

p(k + 1, t)eθ(k+1)t
]

− (a(k) + b(k)) e−θ(k)tD
1−ν(k)
t

[

p(k, t)eθ(k)t
]

− θ(k)p(k, t). (1.9)

1.4. Mean field master equation for the density of cells.

Instead of the probability p(k, t) for an individual cell one can consider the mean density of cells ρ(x, t)
as a function of space x and time t. The master equation (1.2) can be rewritten as the equation for the
density ρ(x, t) by changing the variables as k → x and k ± 1 → x± l:

∂ρ(x, t)

∂t
= λ(x− l)ρ(x− l, t) + µ(x+ l)ρ(x+ l, t)− (λ(x) + µ(x))ρ(x, t)− θ(x)ρ(x, t), (1.10)

where l is the jump size, θ(x) is the death rate. The advantage of this equation is that one can easily
take into account various non-linear effects by assuming the dependence of the rate functions λ(x), µ(x)
and θ(x) on the average density ρ(x, t).
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In the anomalous subdiffusive case, the master equation for mean field ρ(x, t) can be obtained from
(1.9). It can be written as a mass balance equation

∂ρ(x, t)

∂t
= −I(x, t) + I(x− l, t)− θ(x)ρ(x, t), (1.11)

where I(x, t) is the total flow of cells from the point x to x+ l

I(x, t) = a(x)e−θ(x)tD
1−ν(x)
t

[

eθ(x)tρ(x, t)
]

− b(x+ l)e−θ(x+l)tD
1−ν(x+l)
t

[

eθ(x+l)tρ(x+ l, t)
]

(1.12)

and I(x− l, t) is the total flow of cells from the point x− l to x

I(x− l, t) = a(x− l)e−θ(x−l)tD
1−ν(x−l)
t

[

eθ(x−l)tρ(x− l, t)
]

− b(x)e−θ(x)tD
1−ν(x)
t

[

eθ(x)tρ(x, t)
]

. (1.13)

Here a(x) and b(x) are the anomalous rate functions, see (3.12). One can see that the flow of cells I(x, t)
depends on the death rate θ(x). It means that in the anomalous case one cannot separate the transport
of cells from the death process [18]. This phenomenon does not exist in the Markovian case. For the
Markov model (1.10) the flux I(x, t) is independent from θ(x) :

I(x, t) = λ(x)ρ(x, t)− µ(x+ l)ρ(x+ l, t).

When the density ρ(x, t) is conserved (θ = 0), the master equation (1.11) can be approximated by the
fractional Fokker-Planck equation [2, 25,26]

∂ρ(x, t)

∂t
= −

∂

∂x

[

l(a(x)− b(x))D
1−ν(x)
t ρ(x, t)

]

+
∂2

∂x2

[

l2

2
(a(x) + b(x))D

1−ν(x)
t ρ(x, t)

]

. (1.14)

This is an example of the fractional equation with varying anomalous exponent [5]. Note that a(x)−b(x) ∼
l as l → 0, see (3.18).

The purpose of the next section is to set up a non-Markovian discrete-space random walk model
describing cell motility involving memory effects, the death process and subdiffusive transport.

2. Non-Markovian discrete-space random walk model

2.1. Random cell motility

There exist numerous mechanisms that facilitate random cell movement [34]. In this paper we adopt the
following random model of cell motility. When the cell makes a jump to position k, the time the cell
spends here before it makes a jump to point k − 1 or k + 1 is random. It is called the residence time or
waiting (holding) time. We define the residence time at position k as

Tk = min
(

Tµ
k , T

λ
k

)

, (2.1)

where Tµ
k and Tλ

k are the independent random times of jump to the left and right respectively. The
idea here is that there exist internal cellular signals involving two ”hidden” independent random alarm
clocks. If one of the clocks goes off first, say Tλ

k < Tµ
k , the cell moves to the right to the point k + 1.

The other clock ”tells” the cell to move left to the point k − 1 if it goes off first (Tµ
k < Tλ

k ). Note that
migration of cells is a highly complicated dynamic process which is regulated by both intercellular signals
and the surrounding environment. Since we do not know the exact mechanism of cell motility we use a
stochastic approach involving two random times Tµ

k and Tλ
k for jumping to the left and right. Note that

if the random times Tµ
k and Tλ

k are exponentially distributed with the rates µ(k) and λ(k) respectively,
we have a classical Markov model with the master equation (1.2). If the random variables Tµ

k and Tλ
k are

not exponentially distributed, the standard Markov approach does not work. In this section we consider
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the non-Markovian case when Tµ
k and Tλ

k are independent positive random variables with general survival
functions

Ψµ(k, τ) = Pr {Tµ
k > τ} , Ψλ(k, τ) = Pr

{

Tλ
k > τ

}

. (2.2)

The Markov model (1.2) corresponds to the following choice

Ψµ(k, τ) = e−µ(k)τ , Ψλ(k, τ) = e−λ(k)τ . (2.3)

It is convenient to introduce the rate of escape (hazard function) γ(k, τ) from the point k as

γ(k, τ) = lim
h→0

Pr {τ < Tk < τ + h |Tk>τ}

h
. (2.4)

If we denote the survival function at the point k as

Ψ(k, τ) = Pr {Tk > τ}

and the residence time probability density function as

ψ(k, τ) = −
∂Ψ(k, τ)

∂τ
,

then [6]

γ(k, τ) =
ψ(k, τ)

Ψ(k, τ)
. (2.5)

Now we determine this rate function in terms of statistical characteristics of random residence times
Tµ
k and Tλ

k . It follows from the definition of the residence time Tk at position k (2.1) that the survival
function Ψ(k, τ) can be written as a product

Ψ(k, τ) = Ψλ(k, τ)Ψµ(k, τ),

where Ψλ(k, τ) and Ψµ(k, τ) are defined by (2.2). Differentiation of this equation with respect to τ gives

ψ(k, τ) = ψλ(k, τ) + ψµ(k, τ), (2.6)

where the transition densities ψλ(k, τ) and ψµ(k, τ) are defined as

ψλ(k, τ) = −
∂Ψλ(k, τ)

∂τ
Ψµ(k, τ), ψµ(k, τ) = −

∂Ψµ(k, τ)

∂τ
Ψλ(k, τ). (2.7)

The formula (2.6) is the particular case of the general expression for the residence time PDF in terms
of the transition densities (see formula (5) in the classical paper by van Kampen [22]). These transition
densities have a clear probabilistic meaning. For example, ψµ(k, τ)∆τ is the probability that the cell’s
jump to the left occurs in the time interval (τ, τ +∆τ) since the cell arrived at point k. If we divide both
sides of (2.6) by the survival function Ψ(k, τ) and use the formula (2.5), we obtain

γ(k, τ) = λ(k, τ) + µ(k, τ), (2.8)

where the rate of jump to the right λ(k, τ) and the rate of jump to the left µ(k, τ) are defined as

λ(k, τ) =
ψλ(k, τ)

Ψ(k, τ)
, µ(k, τ) =

ψµ(k, τ)

Ψ(k, τ)
. (2.9)

Note that the transition rates λ(k, τ) and µ(k, τ) can be introduced from the very beginning as it is done
in [22]. By using (2.5) and (2.8), we write the survival function Ψ(k, τ) as

Ψ(k, τ) = e−
∫

τ

0
λ(k,τ)dτ−

∫
τ

0
µ(k,τ)dτ . (2.10)
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The residence time probability density function ψ(k, τ) takes the form

ψ(k, τ) = (λ(k, τ) + µ(k, τ))e−
∫

τ

0
λ(k,τ)dτ−

∫
τ

0
µ(k,τ)dτ .

For the Markov case for which λ(k) and µ(k) are independent of the residence time variable τ, we obtain
from (2.10) the standard exponential survival function

Ψ(k, τ) = e−λ(k)τ−µ(k)τ

corresponding to the Markov master equation (1.2).

2.2. Structured probability density function

If the residence time probability density function ψ is not exponential, the random walk is non-Markovian.
The standard method to deal with non-Markovian stochastic processes is to add auxiliary variables to
the definition of the random walk to make the process Markovian [6]. Here we introduce the structured
probability density function ξ(k, t, τ) involving residence time τ as auxiliary variable. The structural
density gives the probability that the cell position X(t) at time t is at the point k and its residence time
Tk at point k is in the interval (τ, τ + dτ). This is a standard way to deal with non-Markovian random
walks [6, 28]. Suppose that cells die at random at rate θ(k) that depends on k. The density ξ(k, t, τ)
obeys the balance equation

∂ξ

∂t
+
∂ξ

∂τ
= −λ(k, τ)ξ − µ(k, τ)ξ − θ(k)ξ. (2.11)

We consider only the case when the residence time of random walker at t = 0 is equal to zero, so the
initial condition is

ξ(k, 0, τ) = p0(k)δ(τ), (2.12)

where p0(k) = Pr {X(0) = k}. The boundary condition in terms of residence time variable (τ = 0) can
be written as [6]

ξ(k, t, 0) =

∫ t

0

λ(k − 1, τ)ξ(k − 1, t, τ)dτ +

∫ t

0

µ(k + 1, τ)ξ(k + 1, t, τ)dτ. (2.13)

In what follows we consider only positive values of k. In which case, we have to specify the boundary
condition for k = 1. We write

ξ(1, t, 0) = (1− χ)

∫ t

0

µ(1, τ)ξ(1, t, τ)dτ +

∫ t

0

µ(2, τ)ξ(2, t, τ)dτ. (2.14)

This equation tells us that when cells escape from the point k = 1 and move to the left with the rate
µ(1, τ), they are adsorbed by the wall with probability χ, and reflected back to the position k = 1 with
the probability 1 − χ. Note that this boundary condition can be written in many different ways, for
example, the cells can be reflected to state k = 2. One can also introduce a residence time PDF for a
wall such that the reflection is not instantaneous.

We solve (2.11) by the method of characteristics

ξ(k, t, τ) = ξ(k, t− τ, 0)e−
∫

τ

0
λ(k,τ)dτ−

∫
τ

0
µ(k,τ)dτ−θ(k)τ , τ < t, k ≥ 1. (2.15)

The structural density ξ can be rewritten in terms of the survival function Ψ(k, τ) (2.10) and the integral
arrival rate

j(k, t) = ξ(k, t, 0)
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as
ξ(k, t, τ) = j (k, t− τ)Ψ(k, τ)e−θ(k)τ , τ < t, k ≥ 1. (2.16)

Our purpose now is to derive the master equation for the probability p(k, t) = Pr {X(t) = k} :

p(k, t) =

∫ t

0

ξ(k, t, τ)dτ, k ≥ 1. (2.17)

Let us introduce the integral escape rate to the right iλ(k, t) and the integral escape rate to the left
iµ(k, t) as

iλ(k, t) =

∫ t

0

λ(k, τ)ξ(k, t, τ)dτ, iµ(k, t) =

∫ t

0

µ(k, τ)ξ(k, t, τ)dτ. (2.18)

Then the boundary conditions (2.13) and (2.14) can be written in a very simple form:

j(k, t) = iλ(k − 1, t) + iµ(k + 1, t), k > 1 (2.19)

and
j(1, t) = (1− χ)iµ(1, t) + iµ(2, t). (2.20)

It follows from (2.9), (2.12), (2.16) and (2.18) that

iλ(k, t) =

∫ t

0

ψλ(k, τ)j(k, t− τ)e−θ(k)τdτ + ψλ(k, t)p0(k)e
−θ(k)t, (2.21)

iµ(k, t) =

∫ t

0

ψµ(k, τ)j(k, t− τ)e−θ(k)τdτ + ψµ(k, t)p0(k)e
−θ(k)t. (2.22)

Substitution of (2.12) and (2.16) to (2.17), gives

p(k, t) =

∫ t

0

Ψ(k, τ)j(k, t− τ)e−θ(k)τdτ + Ψ(k, t)p0(k)e
−θ(k)t. (2.23)

It is convenient to introduce the integral escape rate i(k, t) as the sum of the escape rate to the right
iλ(k, t) and the escape rate to the left iµ(k, t)

i(k, t) = iλ(k, t) + iµ(k, t). (2.24)

The balance equation for p(k, t) can be written as

∂p(k, t)

∂t
= −i(k, t) + j(k, t)− θ(k)p(k, t), k > 1. (2.25)

To obtain a closed equation for p(k, t) we need to express i(k, t) and j(k, t) in terms of p(k, t). By applying
the Laplace transform ψ̂(k, s) =

∫

∞

0
ψ(k, τ)e−sτdτ to (2.21), (2.22) and (2.23), we obtain

ı̂λ(k, s) = ψ̂λ(k, s+ θ(k)) [̂(k, s) + p0(k)] ,

ı̂µ(k, s) = ψ̂µ(k, s+ θ(k)) [̂(k, s) + p0(k)]

and
p̂(k, s) = Ψ̂(k, s+ θ(k)) [̂(k, s) + p0(k)] .

In the Laplace space we have the following expressions for escape rates

ı̂λ(k, s) =
ψ̂λ(k, s+ θ(k))

Ψ̂(k, s+ θ(k))
p̂(k, s), ı̂µ(k, s) =

ψ̂µ(k, s+ θ(k))

Ψ̂(k, s+ θ(k))
p̂(k, s). (2.26)
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Using inverse Laplace transform and shift theorem we find

iλ(k, t) =

∫ t

0

Kλ(k, t− τ)e−θ(k)(t−τ)p(k, τ)dτ,

iµ(k, t) =

∫ t

0

Kµ(k, t− τ)e−θ(k)(t−τ)p(k, τ)dτ, (2.27)

where Kλ(k, t) and Kµ(k, t) are the memory kernels defined by Laplace transforms

K̂λ (k, s) =
ψ̂λ(k, s)

Ψ̂ (k, s)
, K̂µ (k, s) =

ψ̂µ(k, s)

Ψ̂ (k, s)
. (2.28)

It follows from (2.19), (2.24), (2.25) and (2.27) that the master equation for the probability p(k, t) is

∂p(k, t)

∂t
=

∫ t

0

Kλ(k − 1, t− τ)p(k − 1, τ)e−θ(k−1)(t−τ)dτ

+

∫ t

0

Kµ(k + 1, t− τ)p(k + 1, τ)e−θ(k+1)(t−τ)dτ

−

∫ t

0

[Kλ(k, t− τ) +Kµ(k, t− τ)]p(k, τ)e−θ(k)(t−τ)dτ − θ(k)p(k, t) (2.29)

for k > 1. The balance equation for k = 1 is

∂p(1, t)

∂t
= −χiµ(1, t)− iλ(1, t) + iµ(2, t)− θ(1)p(1, t)

or

∂p(1, t)

∂t
= −χ

∫ t

0

Kµ(1, t− τ)p(1, τ)e−θ(1)(t−τ)dτ −

∫ t

0

Kλ(1, t− τ)p(1, τ)e−θ(1)(t−τ)dτ

+

∫ t

0

Kµ(2, t− τ)p(2, τ)e−θ(2)(t−τ)dτ − θ(1)p(1, t), (2.30)

where 0 ≤ χ ≤ 1. The master equation for p(k, t) can be rewritten in terms of the probability flux I(k, t)
from the point k to k + 1

I(k, t) =

∫ t

0

Kλ(k, t− τ)p(k, τ)e−θ(k)(t−τ)dτ −

∫ t

0

Kµ(k + 1, t− τ)p(k + 1, τ)e−θ(k+1)(t−τ)dτ (2.31)

as
∂p(k, t)

∂t
= −I(k, t) + I(k − 1, t)− θ(k)p(k, t). (2.32)

In the next section we shall derive fractional master equation for p(k, t).

3. Anomalous subdiffusion in heterogeneous media

We now turn to the anomalous subdiffusive case. We assume that the longer cell survives at point k, the
smaller the transition probability from k becomes. It means that the transition rates λ(k, τ) and µ(k, τ)
are decreasing functions of residence time τ. We assume that

λ(k, τ) =
νλ(k)

τ0(k) + τ
, µ(k, τ) =

νµ(k)

τ0(k) + τ
, (3.1)
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where τ0(k) is a parameter with units of time. Both νλ(k) and νµ(k) play a very important role in what
follows. From (2.10) and (3.1) we find that the survival function has a power-law dependence

Ψ(k, τ) =

(

τ0(k)

τ0(k) + τ

)ν(k)

,

where the exponent

ν(k) = νλ(k) + νµ(k) (3.2)

depends on the state k. Residence time probability density function ψ(k, τ) = −∂Ψ(k, τ)/∂τ has the
Pareto form

ψ(k, τ) =
ν(k) (τ0(k))

ν(k)

(τ0(k) + τ)1+ν(k)
, (3.3)

The anomalous subdiffusive case [2, 28] corresponds to

ν(k) = νλ(k) + νµ(k) < 1.

We can notice from (3.1) that the ratios λ(k, τ) and µ(k, τ) to λ(k, τ) + µ(k, τ) are independent of the
residence time variable τ that is

λ(k, τ)

λ(k, τ) + µ(k, τ)
=

νλ(k)

νλ(k) + νµ(k)
,

µ(k, τ)

λ(k, τ) + µ(k, τ)
=

νµ(k)

νλ(k) + νµ(k)
.

In this case it is convenient to introduce the probabilities of jumping to the right

pλ(k) =
νλ(k)

νλ(k) + νµ(k)
(3.4)

and to the left

pµ(k) =
νµ(k)

νλ(k) + νµ(k)
. (3.5)

Note that these jump probabilities are completely determined by the anomalous exponents νλ(k) and
νµ(k). In the standard CTRW theory, these jump probabilities are given independently [2, 28].

Let us consider the non-local model for which the jump probabilities pλ(k) and pµ(k) depend on the
chemotactic substance S(k) as follows

pλ(k) = Ae−β(S(k+1)−S(k)), pµ(k) = Ae−β(S(k−1)−S(k)), (3.6)

where the parameter A is determined from pλ(k)+ pµ(k) = 1. These jump probabilities describe the bias
of cells with respect to the spatial gradient S(k + 1)− S(k) [4, 32]. One can obtain [17]

pλ(k)− pµ(k) =
e−βS(k+1) − e−βS(k−1)

e−βS(k+1) + e−βS(k−1)
. (3.7)

The transition PDF’s ψλ(k, τ) = λ(k, τ)Ψ(k, τ) and ψµ(k, τ) = µ(k, τ)Ψ(k, τ) can be rewritten in terms
of ψ(k, τ), pλ(k) and pµ(k) as

ψλ(k, τ) = pλ(k)ψ(k, τ), ψµ(k, τ) = pµ(k)ψ(k, τ). (3.8)

The asymptotic approximation for the Laplace transform of the waiting time density ψ(k, τ) of the Pareto
form (3.3) can be found from the Tauberian theorem [15]

ψ̂ (k, s) ≃ 1− g(k)sν(k), s→ 0
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with
g(k) = Γ (1− ν(k)) (τ0(k))

ν(k)
. (3.9)

We obtain from (2.28) and (3.8) the Laplace transforms of the memory kernels

K̂λ (k, s) ≃
pλ(k)s

1−ν(k)

g(k)
, K̂µ (k, s) ≃

pµ(k)s
1−ν(k)

g(k)
, s→ 0. (3.10)

Therefore, the integral escape rates to the right iλ(k, t) and to the left iµ(k, t) in the subdiffusive case are

iλ(k, t) = a(k)e−θ(k)tD
1−ν(k)
t

[

p(k, t)eθ(k)t
]

,

iµ(k, t) = b(k)e−θ(k)tD
1−ν(k)
t

[

p(k, t)eθ(k)t
]

. (3.11)

Here D
1−ν(k)
t is the Riemann-Liouville fractional derivative with varying order defined by (1.7). The

anomalous rate functions a(k) and b(k) are

a(k) =
pλ(k)

g(k)
=

νλ(k)

ν(k)Γ (1− ν(k)) (τ0(k))
ν(k)

,

b(k) =
pµ(k)

g(k)
=

νµ(k)

ν(k)Γ (1− ν(k)) (τ0(k))
ν(k)

(3.12)

with the anomalous exponent ν(k) defined in (3.2).The master equation (2.29) takes the form of non-
homogeneous fractional equation

∂p(k, t)

∂t
= a(k − 1)e−θ(k−1)tD

1−ν(k−1)
t

[

p(k − 1, t)eθ(k−1)t
]

+b(k + 1)e−θ(k+1)tp(k + 1)D
1−ν(k+1)
t

[

p(k + 1, t)eθ(k+1)t
]

− (a(k) + b(k)) e−θ(k)tD
1−ν(k)
t

[

p(k, t)eθ(k)t
]

− θ(k)p(k, t) (3.13)

for k > 1.
For k = 1 with θ(k) = χ = 0, we obtain

∂p(1, t)

∂t
= b(2)D

1−ν(2)
t p(2, t)− a(1)D

1−ν(1)
t p(1, t). (3.14)

The fractional probability flux Iν(k, t) from the point k to k + 1 is

Iν = a(k)e−θ(k)tD
1−ν(k)
t

[

p(k, t)eθ(k)t
]

− b(k+1)e−θ(k+1)tp(k+1)D
1−ν(k+1)
t

[

p(k + 1, t)eθ(k+1)t
]

. (3.15)

The equation (3.13) can be rewritten in terms of the probability flux Iν(k, t) as

∂p(k, t)

∂t
= −Iν(k, t) + Iν(k − 1, t)− θ(k)p(k, t). (3.16)

3.1. Fractional Fokker-Planck equation for cells density and chemotaxis

In this subsection we consider the continuous case (k → x) and find the drift l(a(x)− b(x)) together with
diffusion coefficient in the fractional Fokker-Planck equation (1.14). It follows from (3.12) that the drift
is proportional to the difference in the anomalous exponents νλ(x) and νµ(x), since

a(x)− b(x) =
pλ(x)− pµ(x)

g(x)
=

νλ(x)− νµ(x)

ν(x)Γ (1− ν(x)) (τ0(x))
ν(x)

. (3.17)
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Stationary solution (3.22)
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ρ
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(x)

Figure 1. Monte-Carlo simulation of the stationary solution to equation (3.19) and
the analytical solution (3.22) for the linear distribution of the chemotactic substance
S(x) = mx with m = 2, β = 10−2.

The difference νλ(x) − νµ(x) can be approximated in the different ways. In the case of chemotaxis this
difference is proportional to the gradient of the local concentration of the chemotactic substance S(x).
Using (3.7), we obtain

pλ(x)− pµ(x) =
e−βS(x+l) − e−βS(x−l)

e−βS(x+l) + e−βS(x−l)
.

In the limit l → 0, we have the standard chemotaxis model

a(x)− b(x) =
pλ(x)− pµ(x)

g(x)
= −

βl

g(x)

∂S

∂x
+ o (l) , (3.18)

where the case β > 0 corresponds to the negative taxis: the drift is in the direction of the decrease in the
value of the chemotactic substance S(x). The fractional Fokker-Planck equation (1.14) takes the form

∂ρ(x, t)

∂t
=

∂

∂x

[

l2β

g(x)

∂S

∂x
D

1−ν(x)
t ρ(x, t)

]

+
∂2

∂x2

[

l2

2g(x)
D

1−ν(x)
t ρ(x, t)

]

. (3.19)

As an example, let us consider the case when the anomalous exponent ν and time parameter τ0 are
constants. Then the fractional Fokker-Planck equation (3.19) can be rewritten as follows

∂ρ(x, t)

∂t
= 2βDνD

1−ν
t

∂

∂x

[

∂S

∂x
ρ(x, t)

]

+DνD
1−ν
t

∂2ρ(x, t)

∂x2
, (3.20)

where Dν is the fractional diffusion coefficient

Dν =
l2

2Γ (1− ν)τν0
.

In the case of the reflective boundary conditions at x = 0, the fractional equation (3.20) admits the
stationary solution ρst(x) in the semi-infinite domain [0,∞). It obeys the equation

2β
∂

∂x

[

∂S(x)

∂x
ρst(x)

]

+
∂2ρst(x)

∂x2
= 0 (3.21)
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and has the form of the Boltzmann distribution [25,26]

ρst(x) = N−1 exp [−2βS(x)] , (3.22)

where N =
∫

∞

0
exp [−2βS(x)] dx. This distribution describes the aggregation of cells due to nonuniform

distribution of the chemotactic substance S(x). Fig. 1 illustrates the stationary profile of cells density
ρst(x) = 2βm exp [−2βmx] for the linear distribution S(x) = mx and m = 2, β = 10−2.

We use Monte-Carlo method to simulate a stationary solution to equation (3.19). We select the
following parameters: ν = 0.5, τ0 = 1, and l = 0.01. The Fig. 1 shows the result of the 106 simulated
random walk trajectories, with jump probabilities given by (3.6), Pareto waiting time distribution (3.3),
and terminal time T = 106.

In the next section we will be concerned with the asymptotic behavior of the solution of the master
equation p(k, t) as t→ ∞ for θ(k) = 0. In particular, we will show that the stationary distribution (3.22)
is not structurally stable with respect to the spatial variations of the anomalous exponent.

4. Structural instability and anomalous aggregation

It has recently been shown that the subdiffusive fractional equations with constant anomalous exponent
ν in a bounded domain [0, L] are not structurally stable with respect to the non-homogeneous variations
of parameter ν [14]. It turns out that the spatial variations of the anomalous exponent lead to a drastic
change in asymptotic behavior of p(k, t) for large t. The purpose of this section is to find the conditions
of this structural instability in semi-infinite domain 1 ≤ k <∞. We consider the case when θ(k) = χ = 0
for which the total probability is conserved

∞
∑

k=1

p(k, t) = 1 (4.1)

and the fractional probability flux Iν(k, t) from the point k to k + 1 is

Iν(k, t) = a(k)D
1−ν(k)
t p(k, t)− b(k + 1)p(k + 1)D

1−ν(k+1)
t p(k + 1, t). (4.2)

For simplicity we assume that the initial conditions are p0(1) = 1 and p0(k) = 0 for k 6= 1.Taking the
Laplace transform of (1.6) and (4.1) we obtain

sp̂(k, s) = a(k − 1)s1−ν(k−1)p̂(k − 1, s) + b(k + 1)s1−ν(k+1)p̂(k + 1, s)

− (a(k) + b(k)) s1−ν(k)p̂(k, s) (4.3)

and
∞
∑

k=1

sp̂(k, s) = 1. (4.4)

Since there is no flux of cells outside the left border, we have for k = 1

sp̂(1, s)− 1 = b(2)s1−ν(2)p̂(2, s)− a(1)s1−ν(1)p̂(1, s). (4.5)

In the limit s→ 0, one can obtain from (4.5) simple formula expressing p̂(2, s) in terms of p̂(1, s)

p̂(2, s) ≃
a(1)sν(2)−ν(1)

b(2)
p̂(1, s), s→ 0.

In general, we find from (4.3) and (4.5) p̂(k, s) in terms of p̂(k − 1, s)

p̂(k, s) ≃
a(k − 1)sν(k)−ν(k−1)

b(k)
p̂(k − 1, s), k > 1, s→ 0. (4.6)
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This formula has very simple probabilistic meaning: the flux Iν(k − 1, t) → 0 as t → ∞. If we take the
Laplace transform of Iν(k − 1, t) from (4.2), we obtain

Îν(k − 1, s) = a(k − 1)s1−ν(k−1)p̂(k − 1, s)− b(k)p(k)s1−ν(k)p̂(k, s). (4.7)

It follows from (4.6) that Îν(k, s) ≃ 0 as s→ 0.

4.1. Stationary solution to fractional equation with constant anomalous exponent

Let us assume that the anomalous exponent ν(k) is independent of the position k that is ν = const. Let
us find stationary solution to the fractional master equation (1.6)

pst(k) = lim
t→∞

p(k, t) = lim
s→0

sp̂(k, s). (4.8)

It follows from (4.6) that

p̂(k, s) ≃
a(k − 1)

b(k)
p̂(k − 1, s), k > 1, s→ 0.

or

p̂(k, s) ≃
k−1
∏

j=1

a(j)

b(j + 1)
p̂(1, s), k > 1, s→ 0. (4.9)

Using the normalization condition (4.4) and (4.8), we obtain the stationary solution of the equation (1.6)

pst(k) = pst(1)
k−1
∏

j=1

a(j)

b(j + 1)
, k > 1, (4.10)

where

pst(1) =



1 +

∞
∑

k=2

k−1
∏

j=1

a(j)

b(j + 1)





−1

.

If the sum
∞
∑

k=2

k−1
∏

j=1

a(j)

b(j + 1)

is divergent, the stationary solution does not exist. In particular, if we assume that the anomalous rate
functions a and b are equal, that is, a(k) = b(k + 1), then for a finite domain with k = 1, 2, ..., N, we
obtain uniform distribution pst(k) = 1/N for every k. The stationary solution (4.10) is very similar to
(1.4) corresponding to the Markov birth-death model. However, this similarity is very deceptive, because
(4.10) is not structurally stable with respect to the non-homogeneous variations of parameter ν. The aim
of next subsection is to show this structural instability.

4.2. Anomalous aggregation.

Now we consider non-homogeneous case for which the anomalous exponent depends on k. We assume
that the point k =M has the property that ν(M) < ν(k) for all k 6=M . Our purpose now is to find the
conditions under which

lim
t→∞

p(M, t) = 1, lim
t→∞

p(k, t) = 0, k 6=M. (4.11)

It means that the total probability concentrates just at one point k = M. This phenomenon is called
an anomalous aggregation [12]. This asymptotic behavior of cells was observed in experiments on
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phagotrophic protists when “cells become immobile in attractive patches, which will then eventually
trap all cells” [16]. In the Laplace space, (4.11) takes the form

lim
s→0

sp̂(M, s) = 1, lim
s→0

sp̂(k, s) = 0, k 6=M.

We can rewrite the normalization condition (4.4) as

sp̂(M, s) +

M−1
∑

k=1

sp̂(M − k, s) +

∞
∑

k=1

sp̂(M + k, s) = 1. (4.12)

By using (4.6), we express p̂(M + k, s) in terms of p̂(M, s) as follows

p̂(M + k, s) ≃ p̂(M, s)

k
∏

j=1

a(M + j − 1)

b(M + j)
sν(M+k)−ν(M), k ≥ 1, s→ 0. (4.13)

Now we write the formula for p̂(M − k, s) in terms of p̂(M, s)

p̂(M − k, s) ≃ p̂(M, s)sν(M−k)−ν(M)
k
∏

j=1

b(M − j + 1)

a(M − j)
, k = 1, ...,M − 1, s→ 0. (4.14)

Now we substitute (4.13) and (4.14) into (4.12) and use sp̂(M, s) as a common factor

sp̂(M, s)



1 +

M−1
∑

k=1

sν(M−k)−ν(M)
k
∏

j=1

b(M − j + 1)

a(M − j)
+

∞
∑

k=1

sν(M+k)−ν(M)
k
∏

j=1

a(M + j − 1)

b(M + j)



 ≃ 1.

Since ν(M) < ν(k) for any k 6= M , we have sν(M+k)−ν(M) → 0 and sν(M−k)−ν(M) → 0 as s → 0. We
conclude that if

∞
∑

k=1

sν(M+k)−ν(M)
k
∏

j=1

a(M + j − 1)

b(M + j)
→ 0

as s → 0, then sp̂(M, s) → 1, while sp̂(k, s) → 0. It means that in the limit t → ∞, we obtain (4.11).
If instead of probability p(k, t) we consider the mean density of cells ρ (x, t) , the formula (4.11) can be
rewritten as ρ (x, t) → δ(x − xmin) as t → ∞, where xmin is the point on the interval [0,∞) at which
ν(x) takes its minimum value. Note that this result was obtained for a symmetrical random walk in the
context of chemotaxis and anomalous aggregation [12].

5. Conclusions.

We have studied a non-homogeneous in space and non-local in time random walk model describing
anomalous subdiffusive transport of cells. Using a Markov model with structured probability density
function, we have derived non-local in time and fractional master equations for the probability of cell
position. The advantage of our probabilistic approach is that it allows us to take into account the death
process within the general non-Markovian random walk. The main feature of our fractional model is
that the transition probabilities for jumping on the left and right depend inversely on the residence time
variable. This dependence induces power-law residence time distribution and ultimately the anomalous
subdiffusion of cells. It has recently been shown that the subdiffusive fractional equations with constant
anomalous exponent are not structurally stable in a bounded domain with respect to the non-homogeneous
variations. In this paper we have extended and complemented our previous results for infinite domain and
found exact conditions under which the structural instability takes place. Our model can be generalized
in many ways, e.g., by modelling the residence time by internal chemical reactions via a stochastic or
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ordinary differential equations instead of simple equation for the residence time dτ/dt = 1. It would
be interesting to take into account the density-dependent dispersal [29] including non-linear exclusion
process with cell-to-cell adhesion [21,23].
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