
iterative procedure such as Newton-Raphson, the only unknown being σ
itself.

If one attempts this they will see a problem with the volatility. Depend-
ing on how far in or out of the money the option is the volatility may well
not be constant for a given r, S, and t. So, not only is it dependent on
time but also on the exercise and asset prices. Such a result is often termed
the volatility smile although many other shapes can be observed depending
on the market conditions such as a frown, wry smile etc. This is another
example of the faults in the Black-Scholes model.

5 Solving the heat conduction and Black-Scholes

equations

The PDE which defines the price of a derivative is now known to be
a second-order parabolic equation, in the majority of cases this equation
is also a linear one. This chapter is concerned with the nature of these
equations, focusing attention on the heat conduction equation and then
extending to the Black-Scholes equation itself.

5.1 Properties of the Heat conduction equation

The heat conduction equation takes the form

∂u

∂τ
=
∂2u

∂x2

where τ is the time and x is the spatial variable, it normally models the flow
of heat or its diffusion and has been extensively studied over the years. Its
fundamental properties are as follows

• It is a second order linear PDE, as such if u1 and u2 are solutions then
so is a1u1 + a2u2 for any constants a1, a2

• It is a parabolic equation and it’s characteristics are simply along the
lines τ = c (where c is a constant) which means that this is where infor-
mation propagates along. So any change in the boundary conditions
is felt along these lines.

• The heat conduction equation generally has analytic solutions in x,
technically in that for τ > 0, u(x, τ) has a convergent power series of
(x− x0) for x0 ̸= x.

Crucially, the heat conduction (diffusion) equation is a smoothing out
process, and as such discontinuities in the boundary or initial (final) condi-
tions can be catered for. Recall that in the Black-Scholes equation the final
conditions are often discontinuous.

Example By way of demonstration consider the following initial value prob-

lem.
∂u

∂τ
=
∂2u

∂x2
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Figure 5: A graphical representation of uδ(x, τ) for τ = 0.1, 0.2, 0.3, . . . , 1.

for τ > 0 and −∞ < x < ∞ where u(x, 0) = u0(x) and u → 0 as x → ±∞.
u(x, τ) is analytic for τ > 0. Consider a special solution, about which more
is said later

u(x, τ) = uδ(x, τ) =
1

2
√
πτ

e−x2/4τ (29)

for −∞ < x < ∞ and τ > 0. Now we verify that this indeed satisfies the
PDE.

∂u

∂x
=

−x

4τ3/2
√
π
e−x2/4τ

∂2u

∂x2
=

−1

4τ3/2
√
π
e−x2/4τ +

x2

8τ5/2
√
π
e−x2/4τ

∂u

∂τ
=

−1

4τ3/2
√
π
e−x2/4τ +

x2

8τ5/2
√
π
e−x2/4τ .

So, this is a solution which is well behaved except at one instance, the initial
point in time τ = 0. At this point when x ̸= 0 then uδ(x, 0) = 0 but at
x = 0 it has infinite value. This clearly has discontinuous initial conditions
yet gives rise to a, reasonably, well behaved solution.

What more can we say about this special solution to the heat conduction
equation? Well,

∫ ∞

−∞
uδ(x, τ)dx = 1, ∀τ.

This function has all of the heat initially (τ = 0) concentrated at x = 0 and
then this immediately dissipates out as for any τ > 0, uδ(x, τ) > 0 for all

values of x.
Finally note the close similarity between the probability density function

for the Normal distribution ( 1
σ
√
2π
e−(x−µ)2/2σ2) and the value of uδ(x, τ).

Clearly it is the same only with a mean(µ) of zero and a variance (σ2) of 2τ .
As such it is possible to interpret this particular solution as the probability
density function of the future position of a particle following a Brownian
motion (

√
2dW ) along the x-axis, with the particle starting at the origin.
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5.2 The Dirac delta function

The function uδ(x, τ) when τ = 0 is one representation of the (Dirac)
delta function which is not a function in the normal sense but is known as
a generalised function. It’s definition is as a linear map representing the
limit of a function whose effect is confined to a smaller and smaller interval
but remains finite.

An informal definition is to consider a function

f(x) =

{

1/2ϵ, |x| ≤ ϵ
0, |x| > ϵ

and as ϵ→ 0 the graph becomes taller and narrower but at all points
∫ ∞

−∞
f(x)dx = 1

regardless of the value of ϵ although for all x ̸= 0, f(x) → 0 as ϵ → 0. In
general the delta function δ(x) is the limit as ϵ → 0 of any one-parameter
family of functions δϵ with the following properties

• for each ϵ, δϵ(x) is piecewise smooth;

•
∫∞
−∞ δϵ(x)dx = 1;

• for each x ̸= 0, limϵ→0 δϵ(x) = 0.

Note that the specific solution to the heat conduction equation uδ satisfies
the above constraints with τ replaced by ϵ. The best way to look at the
delta function is to only consider its integral which we know to be 1 and
which smooths out the function’s bad behaviour, especially when x = 0 and
ϵ → 0 (of τ → 0). When concentrating on the integral form we can see the
delta function as a test function, in that
∫ ∞

−∞
δ(x)φ(x)dx = lim

ϵ→0

∫ ∞

−∞
δϵ(x)φ(x)dx

= lim
ϵ→0

{
∫ −ϵ

−∞
δϵ(x)φ(x)dx +

∫ ϵ

−ϵ
δϵ(x)φ(x)dx +

∫ ∞

ϵ
δϵ(x)φ(x)dx

}

= lim
ϵ→0

{

φ(0)

∫ ϵ

−ϵ
δϵ(x)dx

}

= φ(0)

In fact, for any a, b > 0

∫ b

−a
δ(x)φ(x)dx = φ(0)

and, as importantly, for any x0
∫ ∞

−∞
δ(x− x0)φ(x)dx = φ(x0)
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Figure 6: The epsilon representation of δ(x) which is the limit as ϵ→ 0.
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Figure 7: Demonstration that H ′(x) = δ(x).

and so integrating picks out the value of φ at x0, the reason why δ(x) is also
known as a test function.

Other properties concern its links with the Heaviside function as
∫ x

−∞
δ(s)ds = H(x)

and conversely,
H′(x) = δ(x)

where, as before

H(x) =

{

0 if x < 0
1 if x ≥ 0
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5.3 Transforming the Black-Scholes equation

Consider the Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

make the following three substitutions

S = Xex(or x = log
S

X
)

t = T −
τ

1
2σ

2
(or τ =

σ2

2
(T − t))

V = Xv(x, τ) (30)

thus

∂V

∂t
= X

∂v

∂τ

dτ

dt
= X

∂v

∂τ
.−

σ2

2
= −

Xσ2

2

∂v

∂τ
∂V

∂S
= X

∂v

∂x

dx

dS
= X

∂v

∂x

1

S
= e−x ∂v

∂x
∂2V

∂S2
=

∂

∂S

(

∂V

∂S

)

=
e−x

X

∂

∂x

(

e−x ∂v

∂x

)

=
e−x

X

(

e−x ∂
2v

∂x2
− e−x ∂v

∂x

)

=
e−2x

X

(

∂2v

∂x2
−
∂v

∂x

)

which leads to
∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv

where
k =

r
1
2σ

2

Now attempt to remove the ∂v
∂x and v terms by introducing the substitution

v(x, τ) = eαx+βτu(x, τ)

where α and β are constants to be determined, this gives

∂v

∂τ
= βeαx+βτu+ eαx+βτ

∂u

∂τ
∂v

∂x
= αeαx+βτu+ eαx+βτ

∂u

∂x
∂2v

∂x2
= α2eαx+βτu+ 2αeαx+βτ

∂u

∂x
+ eαx+βτ

∂2u

∂x2

which gives

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2u

∂x2
+ (k − 1)

(

αu+
∂u

∂x

)

− ku

to remove the ∂u
∂x and u terms we require

α = −
1

2
(k − 1)

β = −
1

4
(k + 1)2.

32



Thus,

V (S, t) = Xe−
1

2
(k−1)x− 1

4
(k+1)2τu(x, τ) (31)

and
∂u

∂τ
=
∂2u

∂x2
−∞ < x < ∞
τ > 0

To transform the final conditions, or the payoff from the option we have for
a call option

V (S, T ) = max(S −X, 0)

so, from the definition of x, τ and v(x, τ) in (30)

Xv(x, 0) = max(Xex −X, 0)

or
v(x, 0) = max(ex − 1, 0)

and so, from (31)

u(x, 0) = u0(x) = max

[

e
1

2
(k+1)x − e

1

2
(k−1)x, 0

]

(32)

and similarly for a put option

u(x, 0) = u0(x) = max

[

e
1

2
(k−1)x − e

1

2
(k+1)x, 0

]

(33)

As such the Black-Scholes equation has been converted to the heat conduc-
tion equation for −∞ < x < ∞ and, for European call and put options,
initial condition u0(x) from (32) and (33) above. If we can determine a pro-
cedure for valuing the initial value problem for the heat conduction equation
we’ll be able to determine the correct values for call and put options.
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5.4 Similarity solutions to the Heat conduction equation

Explanation is first by way of two examples

Example 5.1: Suppose that u(x, τ) satisfies the heat conduction equation

∂u

∂τ
=
∂2u

∂x2
, x, τ > 0

with the following boundary conditions

u(x, τ = 0) = 0 (34)

u(x = 0, τ) = 1 (35)

u(x, τ) → 0 as x → ∞ (36)

i.e. the bar initially has heat zero and then immediately the heat at one end
is raised to 1 and kept there.

Seek a solution of the form u(x, τ) = U(ξ) where ξ = x/
√
τ on substitu-

tion
∂u

∂τ
=

dU

dξ

∂ξ

∂τ
= −

1

2
xτ−3/2 dU

dξ

∂u

∂x
=

dU

dξ

∂ξ

∂x
= τ−1/2 dU

dξ

and
∂2u

∂x2
= τ−1/2 d

dξ

(

τ−1/2 dU

dξ

)

= τ−1 d
2U

dξ2

and so, replacing x/
√
τ by ξ and multiplying by τ gives the ODE

d2U

dξ2
+

1

2
ξ
dU

dξ
= 0

the boundary conditions become

U(0) = 1

and
U(∞) = 0

with this second condition catering for both the initial condition and u(x, τ) →
0 as x → ∞. Integrating the ODE once gives

dU

dξ
= Ce−ξ

2/4

(C constant) and on solving gives

U(ξ) = C

∫ ξ

0
e−s2/4ds+D

(D constant). Upon substituting the boundary conditions, first U(0) = 1
gives

1 = D
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and then U(∞) = 0 gives

0 = C

∫ ∞

0
e−s2/4ds+ 1

but we know that
∫ ∞

0
e−s2/4ds =

√
π

thus
−1 = C

√
π

Thus,

U(ξ) = −
1√
π

∫ ξ

0
e−s2/4ds+ 1

but
∫ ξ

0
=

∫ ∞

0
−
∫ ∞

ξ

hence

U(ξ) = −
1√
π

(
∫ ∞

0
e−s2/4ds−

∫ ∞

ξ
e−s2/4ds

)

+ 1

or

U(ξ) = −
1√
π

(

−
∫ ∞

ξ
e−s2/4ds

)

− 1 + 1

so

U(ξ) =
1√
π

∫ ∞

ξ
e−s2/4ds

and on replacing ξ by its definition we get

u(x, τ) =
1√
π

∫ ∞

x/
√
τ
e−s2/4ds

The key trick being that to solve the equation we replace two variables (x
and τ) by just one (ξ) and then the problem reduces to an ODE. Even more
useful is the next example, for −∞ < x < ∞.

Example 5.2: Consider the following equation for u(x, τ)

∂u

∂τ
=
∂2u

∂x2
,

−∞ < x < ∞
τ > 0

where
∫ ∞

−∞
u(x, τ)dx = k,∀τ where k is a constant.

Choosing the normalised case where k = 1 we search for a solution of the
form u(x, τ) = τ−1/2U(ξ) where ξ = x/

√
τ . The other boundary condition

is a somewhat odd one but is that as |ξ| → ∞ then

U(ξ) = o(1/ξ)
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which says that the solution must decay faster than 1/ξ as ξ gets very big (or
alternatively u(x, τ) = o(1/x) as |x| → ∞). On transforming the derivatives
we get

∂u

∂τ
= −

1

2
τ−3/2U + τ−1/2 dU

dξ
.−

1

2
xτ−3/2 = −

1

2
τ−3/2U −

1

2
ξτ−3/2 dU

dξ

∂u

∂x
= τ−1/2 dU

dξ

∂ξ

∂x
= τ−1dU

dξ

and
∂2u

∂x2
= τ−1/2 d

dξ

(

τ−1dU

dξ

)

= τ−3/2 d
2U

dξ2

which gives
d2U

dξ2
+

1

2
ξ
dU

dξ
+

1

2
U = 0

or
d2U

dξ2
+

d

dξ

(

1

2
ξU

)

= 0.

Integrating both sides wrt ξ gives

dU

dξ
+

1

2
ξU = C

where C is a constant. Now as ξ → ∞, U = o(1/ξ) so the LHS is o(1) thus
this constant C = 0. So then on solving the ODE

U(ξ) = Ae−ξ
2/4,

where A is a constant. Putting in the condition we have

A

∫ ∞

−∞
τ−1/2e−x2/4τdx = 1

however, set x′ = x/
√
τ and we get dx =

√
τdx′ and the equation becomes

A

∫ ∞

−∞
e−x′2/4dx′ = 1

and so using the usual result

2A
√
π = 1

thus

A =
1

2
√
π

and so,

u(x, τ) = τ−1/2

(

1

2
√
π
e−x2/4τ

)

or

u(x, τ) =
1

2
√
πτ

e−x2/4τ

which is precisely the special solution uδ from section 5.1, equation 29.
[Note: The derivation in Wilmott where he states that U(ξ) = Ce−ξ

2/4+D
is wrong .]
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5.4.1 How similarity solutions work

The reason why the above similarity solution worked was because the
governing equations and the boundary conditions do not change under the
scalings x → λx and τ → λ2τ , where λ ∈ R. In particular consider new
variables x∗ = λx and τ∗ = λ2τ , these clearly satisfy the heat-conduction
equation and in Example 5.1 the boundary conditions become u(x∗, 0) = 0
and u(0, τ∗) = 1 for any λ.

Combining these two results to get a variable which is independent of λ
the only possible combination is x/

√
τ = x∗/

√
τ∗. Hence the solution to the

problem must be a function of x/
√
τ only.

Similarity solutions only work in special cases where all the boundary
and initial conditions are invariant under the scaling transformation. It is
also possible to multiply U(ξ) by a function of τ as in Example 5.2 because
as the heat-conduction equation is linear it is invariant under the scaling
u → µu.

In general with similarity solutions a good practical test to see if they’ll
work is to search for a solution of the form u = ταU(xτβ) in the hope that
the PDE will reduce to an ODE in ξ = xτβ and the boundary conditions will
be satisfied. For the heat conduction equation then in all cases β = −1/2
but the value of α will be dependent on the specific boundary conditions.
For example in 5.1 α = 0 because of the condition at x = 0 and, in Example
5.2, α = −1/2 to remove τ from the integral condition.

5.5 General solution to the Heat-Conduction equation initial
value problem

Searching for a solution to the initial value problem in which we have to
solve

∂u

∂τ
=
∂2u

∂x2
,

−∞ < x < ∞
τ > 0

with initial data u(x, 0) = u0(x) and there are suitable growth conditions at
|x| → ∞ (usually lim|x|→∞ u(x, τ)e−ax2

= 0 for a > 0 and τ > 0).
The key to the formulation is the delta function, δ(x) as we can write

the initial conditions as

u0(x) =

∫ ∞

−∞
u0(ξ)δ(ξ − x)dξ

we recall that the fundamental solution to the initial value problem from 5.2
is

uδ(s, τ) =
1

2
√
πτ

e−s2/4τ

and has initial value uδ(s, 0) = δ(s). Noting that because uδ(s − x, τ) =
uδ(x− s, τ) we have

uδ(s− x, τ) =
1

2
√
πτ

e−(s−x)2/4τ
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which is still a solution to the heat conduction equation with either s or x
as the spatial independent variable and it has initial value

uδ(s− x, 0) = δ(s − x).

Now comes the important bit, hence, for each s the function

u0(s)uδ(s− x, τ)

as a function of x and τ with s held fixed, satisfies the heat conduction
equation as u0(s) is simply a constant. Now using the fact that the diffusion
equation is linear we can add together linear combinations of these solutions
for any s all the way from −∞ to ∞ and obtain another solution to the heat
conduction equation, namely

u(x, τ) =
1

2
√
πτ

∫ ∞

−∞
u0(s)e

−(x−s)2/4τds

and the initial data is

u(x, 0) =

∫ ∞

−∞
u0(s)δ(s − x)ds = u0(x).

What does all this mean? Well, this solution satisfies the heat conduction
equation for all x and for τ > 0 and is also satisfies the initial conditions for
all initial conditions u0(x). It is also possible to show that this solution is
unique (see Examples 5). Hence we have found the general solution.

5.6 Pricing European call and put options

We now know the general solution to the initial value problem for the
heat conduction equation, where u(x, 0) = u0(x) for τ > 0 and −∞ < x <
∞, namely

u(x, τ) =
1

2
√
πτ

∫ ∞

−∞
u0(s)e

−(x−s)2/4τds.

We start by valuing a European call option but the procedure is similar for
a put option. In section 5.3 we transformed the European call option pricing
problem to the following system

∂u

∂τ
=
∂2u

∂x2
,

−∞ < x < ∞
τ > 0

where

u(x, 0) = u0(x) = max

[

e
1

2
(k+1)x − e

1

2
(k−1)x, 0

]

.

By using the known general solution to this problem we have

u(x, τ) =
1

2
√
πτ

∫ ∞

−∞

{

max[e
1

2
(k+1)s − e

1

2
(k−1)s, 0]e−(x−s)2/4τ

}

ds

but u0(x) = 0 for x < 0 hence

u(x, τ) =
1

2
√
πτ

∫ ∞

0

{

[e
1

2
(k+1)s − e

1

2
(k−1)s]e−(x−s)2/4τ

}

ds.
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We make another change of variable, define

x′ =
s− x√

2τ
.

u(x, τ) =
1√
2π

{
∫ ∞

−x/
√
2τ

e
1

2
(k+1)(x′

√
2τ+x)− 1

2
x′2

dx′−
∫ ∞

−x/
√
2τ

e
1

2
(k−1)(x′

√
2τ+x)− 1

2
x′2

dx′}.

Completing the square and removing the terms not dependent on x′ yields

u(x, τ) =
e

1

2
(k+1)x+ 1

4
(k+1)2τ

√
2π

∫ ∞

−x/
√
2τ

e−
1

2
(x′− 1

2
(k+1)

√
2τ)2dx′

−
e

1

2
(k−1)x+ 1

4
(k−1)2τ

√
2π

∫ ∞

−x/
√
2τ

e−
1

2
(x′− 1

2
(k−1)

√
2τ)2dx′

= I1 − I2 (37)

Noting that the expression for the cumulative Normal distribution is as
follows

N(x) =
1√
2π

∫ x

−∞
e−

1

2
s2ds

we transform the dependent variable, x′, once again to

x1 = x′ −
1

2
(k + 1)

√
2τ

and

x2 = x′ −
1

2
(k − 1)

√
2τ

in I1 and I2 respectively and then

u(x, τ) = e
1

2
(k+1)x+ 1

4
(k+1)2τN(d1)− e

1

2
(k−1)x+ 1

4
(k−1)2τN(d2)

where

d1 =
x√
2τ

+
1

2
(k + 1)

√
2τ

d2 =
x√
2τ

+
1

2
(k − 1)

√
2τ .

Transforming the variables back using the usual definitions

V (S, t) = Xe−
1

2
(k−1)x− 1

4
(k+1)2τu(x, τ)

x = log

(

S

X

)

τ =
σ2

2
(T − t)

k =
2r

σ2

gives the following expression for the value of the European call option

C(S, t) = V (S, t) = SN(d1)−Xe−r(T−t)N(d2),
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where

d1 =
log(S/X) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
log(S/X) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

The European put can be valued in a similar manner or, more easily, by
use of the put-call parity, equation. Either approach yields the following
expression for its value, P (S, t)

P (S, t) = Xe−r(T−t)N(−d2)− SN(−d1).

(To use put-call parity note that N(x) +N(−x) = 1).
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