4 The Black-Scholes analysis

4.1 Converting a stochastic process to a deterministic one

In the previous section we have defined a particular model for the move-
ment of stock prices. This is by no means the only possible process used for
underlying assets but is the one which is used for the Black-Scholes analysis,
which still remains the most popular model for practitioners. From here we
now proceed to derive the Black-Scholes PDE.

The main problem with the process followed by the function of S, F', is
that there is still a random term present which makes constructing a PDE
somewhat problematic. The solution to this is to create a new function g
which is completely deterministic. Consider a function

g=1[-AS

where A is an as yet unknown parameter which is constant across a time
period dt. In which case the change in the value of g over this period is

dg =df — AdS
and by substituting in the expressions for df and dS from equations (8) and

(5) we obtain

dg = [MS% + % + %0252% dt + JS%dW — AlpSdt + o SdW]

I
)
n

2
[%—A]der [MS %—A) + 94+ 152525 L dt

Thus, if we choose
of
A==
oS
then the equation reduces to one which has only deterministic variables.
This is the basis of the technique employed by Black and Scholes to derive

their PDE

4.2 The Black-Scholes PDE

Notation:

e S is the current value of the underlying asset, can also be denoted by
S; especially in SDEs but the t is usually dropped.

t is the time elapsed since the option was created and the option expires
at time T

V(S,t) is the value of either a call or a put option.

e ((S,t) is the value of a call option.

P(S,t) is the value of a put option.

X is the exercise price of the option.
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e ¢ is the volatility of the underlying asset or a measure of the uncer-
tainty of its movements. For example, a telecommunications startup
company’s shares will have a higher volatility than Tesco’s shares.

e 1 is the drift of the underlying asset.

e r is the risk-free interest rate, the return that you would receive from
a risk-free investment such as a government bond.

Black-Scholes assumptions:

e The underlying asset follows geometric Brownian motion (dS = pSdt+
oSdW') with constant drift, 4 and volatility o. It is possible to have
the volatility dependent on time but more complicated models will
provide much more challenging problems.

e It is permitted to short sell the underlying asset, i.e. sell an asset that
you don’t actually own.

e There are no transaction costs, all securities are perfectly divisible and
trading takes place continuously.

e There are no dividends, or equivalent, paid out during the lifetime of
the option (this will be relaxed at a later date).

e There are no riskless arbitrage opportunities. Any that do exist exist
only for a very short period of time.

e The risk free rate r is constant. This can also be trivially relaxed
to let r be a function of time. In practice, especially for long-term
derivatives, the interest rate is itself modelled stochastically.

As the option price V(S,t) depends on the underlying asset, S, which follows
geometric Brownian motion

dS = pSdt + o SdWw 9)
and by [t0’s lemma we have
ov. oV 1 0?V oV
dV = |uS—= + — + z0%S? —— | dt + 0S—=dW 10
"5 e T27 7 957 | M T 758 (10)

Now construct a portfolio which consists of an option and short in A of the
underlying. II is defined to be the value of the portfolio where

I=v - AS. (11)
Assume, across a time period dt, that the value of A is held fixed giving
dll =dV — AdS, (12)

and so, on substituting in the expressions for dV and dS in equations (9)
and (10) we get

oV oV ov. 1 0V
1= — — A|dW — - A — 4 0?8 —— 1
d US[@S }d —i—[uS(aS )—i— BN +20'S 557 dt  (13)
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The amount of the underlying which the holder of the portfolio is short
selling, A, has not yet been set. However, if A is selected, as before, such

that oy

A= (14)
then the stochastic differential equation for dII becomes deterministic, as
the coefficient of the dW term is now identically zero. Thus this portfolio is
perfectly hedged as it provides a guaranteed return over a designated time
period. Obviously, this assumes that it is possible to change the value of
A continuously, because as time evolves the value of ‘g—‘g is changing. With

this continuous rebalancing of the portfolio the expression for dII is now

ov 1 o*V
an= (224 12520 N gy, 1
<8t+205852> (15)

However, this portfolio is perfectly hedged, in that it yields a risk-less value
after any period of time ¢ and, as such, should return the risk-free rate.
Assuming no arbitrage then over a period of time, dt, and a constant risk-
free interest rate, r, the change in the portfolio is

dll = rIldt.

If it were the case that dII # rIldt then one could make a risk-free profit by
either borrowing II from the bank and investing in the portfolio (dII > rIldt),
or shorting the portfolio and investing the money in the bank (dII < rIldt).
On replacing II by its definition, equation (11), equation (15) is now

VY [0V 1 4,02V
r(V—S%>dt— <8t +50°8 852>dt. (16)

On dividing equation (16) by dt one obtains

V1 4 .0V ov

— 4+ =0*S*— +rS— —rV =0. 17
ot 277 a5r T 7T (17)
which is the Nobel prize winning Black-Scholes partial differential equation.
Remarks:

e This equation defines the price of any derivative claim on an under-
lying asset which follows geometric Brownian motion. The boundary
conditions will determine which type of derivative we are evaluating.

e This is a backwards parabolic partial differential equation, a class of
equations about which a lot more will be said below.

e Notice that by setting up the portfolio II using what is known as the
Delta Hedge the Black Scholes equation does not depend on the drift
term p in any way. The only parameter which needs to be empirically
estimated is o.

e The Delta (A) which is the rate of change of the derivative with respect
to the underlying asset is a very important value.
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e The linear operator

2
Lps = % + %0252% —|—TS% —-r
is a measure of the difference between the return on the hedged port-
folio (IT) which are the first two terms (see equation (15)) and the
return on a bank deposit which are the last two terms. For a Euro-
pean option these will be the same, though they are not necessarily
for an American option.

e For many types of options it is not possible to obtain closed-form
analytic values but more often than not numerical procedures must
be employed. In this lecture course, though, emphasis will remain on
analytic solutions.
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4.3 Formulating the mathematical problem
4.3.1 Classifying the PDE

For there to be no arbitrage, the option value obtained from the Black-
Scholes PDE must provide a unique option price. Later it will be shown
that, given suitable boundary conditions, this is indeed the case. First, in
order to determine the type of boundary conditions required it is necessary
to find out some general information about the PDE itself.

We know that in general a PDE with solution u(z,t) of the form

AUgy + bugy + cuy + dug + euy + fu=g (18)
is classified depending on the sign of b> — 4ac as follows:
o If b2 — 4ac < 0 then the equation is elliptic.
e If b — 4ac = 0 then the equation is parabolic.
e If b — 4ac > 0 then the equation is hyperbolic.

The most commonly seen parabolic equation is the diffusion or heat equation

o _ou
ox2 Ot

which typically models the evolution of heat along a bar. As they are second
order in x and only first order in ¢ parabolic equations usually require two
boundary conditions in x (or S in the Black-Scholes case) and just the one
in ¢t. It is important to notice here that in the heat conduction equation
the Ou /0t term is of a different sign from that in the Black-Scholes equation
(17). This is because the heat conduction equation is a forwards parabolic
equation whilst the Black-Scholes equation is backwards parabolic. The
difference between the two types is that forwards equations require initial
conditions, whilst backwards equations require final conditions.

Note how these requirements are consistent with the individual nature
of the problems. When valuing options, we know the value at expiry (or
the final time) and so it makes sense that this problem gives rise to a back-
wards parabolic type. The heat conduction (or diffusion) equation requires
a known distribution of heat on a bar (or equivalent system) at ¢ = 0 and
then models how the heat distribution evolves as time moves forwards. As
such the system requires initial conditions - thus is a forwards parabolic
type.

It is essential to always solve parabolic equations ‘in the correct direction’.

4.3.2 Characteristics

The classification of PDEs in the above section is closely related to the
notion of characteristics. Characteristics are families of curves along which
information moves or across which discontinuities may occur. The trick is
to attempt to write the derivative terms in the PDE in terms of directional
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derivatives reducing the equation to one which behaves like an ODE along
these characteristic curves.

Definition (Characteristic curve) A curve I' is a characteristic for a
general second order PDE if, for a general PDE in z and ¢,

ot b:l:\/b2—4ac_

0
ox 2a

along I.

Clearly the value of b?> — 4ac will be important in determining the char-
acteristic curves. In the parabolic case there is just one real valued solution
giving

ot b
or  2a’
In the case of the heat conduction equation where b = 0 then this reduces
to Py
= —0
ox

giving characteristic curves along ¢ = C' where C' is a constant.

4.3.3 Boundary conditions for the Black-Scholes equation

Returning to the Black-Scholes equation, for each particular type of op-
tion we will require the following boundary conditions:

V(S,t) =Vu(t) on S=a
V(S,t) =Vy(t) on S=b
V(S,t) =Vp(S) on t=T

where V,(t) and V4 () are known functions of time and Vr(.S) is, correspond-
ingly, a known function of the underlying asset price. To demonstrate how to
do this for different types of options we’ll consider three cases: the standard
European call and put options and a cash-or-nothing call option.

European call option, C(S,t):

The most straightforward of the conditions to determine is the final
condition C(S,t = T) as this is the known payoff for the call option,
(max(S — X,0)), hence

C(S,T) = max(S — X,0). (19)

The conditions for specific values of S are also reasonably straightforward.
Note that from the process followed by S, namely

dS = pSdt + o SdWw

if S =0 then dS = 0 and , hence, the underlying asset remains at 0 from
then on. Hence for a call option, however small the strike price X is, this
scenario will always result in the option being worthless, hence

C(0,t) =0 (20)
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For large S the situation is not as clear and there are three standard conven-
tions (of which two are provided here for brevity). As S — oo then clearly
the call option is more and more likely to be exercised and in comparison to
the size of S, X will be small and so one can simply use

C(S,t) =S as S — .

However, the S boundary conditions are more important when dealing with
numerical procedures where a large, but finite, limit is put on S (Smax say).
In which case, more accurate conditions are required. One possibility is to
assume that the option will be exercised at expiry, receiving S plus whatever
else contributes to the option’s value as time moves backwards. In this way
write the option price for a particular high value of S as

C(S:t) =S+ f(t)
on substituting into the Black-Scholes equation (17) we’re left with

4 +rS+—r(S+f(t) =0

which on solving gives

f(t) = Ae™

substituting in the known time constraint from (19) we get
A=—-Xe T
and so the boundary condition for large S is

C(S,t) =S —Xe TV as S . (21)

European put option, P(S,t):

The case for a put option is far more straightforward. Again determining
the final condition is trivial as a result of the discussion in Chapter 1, so we
have

P(S,T) = max(X — S,0). (22)

The conditions for particular values of S are extensions of the above
arguments for calls, only more routine. When S = 0 at a particular time
then by the nature of the underlying process then it will stay at 0 until
expiry. Hence the put option will definitely be exercised and thus worth
X — 0= X at expiry. A guaranteed amount of money, in this case X, to be
received at time 7" is worth Xe (7= at time ¢ and hence

P(0,t) = Xe (T (23)

As S becomes very large then the put options will certainly not be exercised
as S will be much larger than the exercise price X and so

P(S;t) -0 as S — oo. (24)
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As before the most important conditions are the final ones, but the other
conditions are essential for numerical schemes as well as giving us more
information about the option prices.

Cash-or-nothing/binary options:

Cash-or-nothing call (put) options (denoted CC(S,t) or CP(S,t)) are
options where, at expiry, if the underlying asset price is above (below) a cer-
tain strike price, X, then the holder receives a pre-designated cash amount
A, whereas if it is below (above) this amount the holder receives nothing.
Hence at expiry, t = T, the final condition for a cash-or-nothing call is

CC(S,T) = AH(S — X)

where H(.) is known as the Heaviside function. The Heaviside function

is defined as follows
0 if <0

H(x):{ 1 if >0

and will be important when solving PDEs later in the course. Cash-or-
nothing options are a special type of option in that their payoff is completely
discontinuous yet it is still possible to find an option value for them.

4.4 Analytic solutions to the Black-Scholes equation

The next chapter of the course will deal with solving the heat conduction
or diffusion equation and how to adapt these techniques to solve the Black-
Scholes equation for some standard option pricing problems. Before doing
that we will study the analytic solutions to the valuation problems and a
few more key features of options.

The Black-Scholes formulae for the price of European call and put
options are as follows:

C(S,t) = SN(dy) — Xe " T=IN(dy) (25)
P(S,t) = Xe " TN (—dy) — SN(—dy) (26)
where
5 log(S/X) + (r + %02)(T —t)
' oVl —t
g — 108(8/X) + (r — 30)(T — 1)
2T ovl —t '
(27)
and

N(z) = #/ e 2 ds (28)

which we recognise as the cumulative distribution function for a Normal
distribution. Note that these expressions satisfy the put call parity and so
by calculating one it is routine to calculate the other, also note that the
boundary conditions at S = 0 and S — oo are satisfied.
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For those students interested in probability it may be worth noting that
N(ds) is the probability that the option will be exercised, i.e. S > X at
expiry. SN(d;) is the current value of a variable that equals St at t =T if
St > X and is zero otherwise.

So, what does a graph of underlying asset against option price looks
like as time moves backwards from expiry? As one would expect from a
PDE which is a close relative of the diffusion equation, the payoff function
max (S — X, 0) gradually diffuses out as time moves backwards. The same
is also true for a cash or nothing option even though the payoff is in fact
discontinuous.

Example

The price of an asset (today) is £5. Find the value of a put and a call
option, both with an exercise price of £6, and both with expiration dates in

9 months time. The risk-free interest rate is 3% per annum (fixed) and the
volatility (constant) is 10% per (annum)%.

Solution

r=.03,T—-t=0.75,0=.1,5=5 X =6.
Using the formulae.d; = —1.8021, dy = —1.8888
Then

N(dy) = N(—1.8021) = N(—1.80) — .21[N(—1.80) — N(—1.81)]
= 0.0359 — .21 x (0.0359 — 0.0351)
0.0357

Similarly N(da) = .0295
Leads to C' = .0060.
Put can be calculated similarly - but best to use put-call parity:

P=C-8+Xe 7T,

and this leads to P = 0.8725.

4.5 Delta hedging and the other hedge parameters

A tedious, yet straightforward, calculation (see example sheet 6) will
show that using the known expressions for the values of call and put options,
that they have the following A’s

oC
oP
Ap =5 =N(d) -1

What does this mean? During the lifetime of the option A varies between 0
for out of the money calls (puts) and 1 (—1) for in the money calls (puts) and
very close to T there is in fact a step function between these two extremes.
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The A simply approximates the rate of change of the option price wrt the
underlying asset and so any slight movement in the option price value will
be offset by a roughly equivalent movement in A of the underlying. Clearly
the portfolio will have to be rebalanced as regularly as possible to have a
perfect hedge. In practise the number of times a portfolio can be hedged
will be limited by transaction costs.

For example, looking at the graph for the value of a cash-or-nothing
call option we immediately see a problem with the delta-hedging strategy
underlying the Black-Scholes analysis. If A is dC'/0S then as t — T then
the A ranges from 0 away from S = X to approaching oo close to S = X.
Thus as the underlying asset price moves, huge amounts of the underlying
will have to be bought and sold to keep the portfolio properly hedged.

There are ways of hedging away other risks, not just those to do with
the movement of the asset price. There are hedge parameters (also known
as, somewhat loosely, as The Greeks) for each of the principle parameters
in the Black-Scholes model, namely:

e The sensitivity to the decay of time of any option V' is known as the

theta and is defined as
oV

O=ar

e The sensitivity to the volatility is known as the vega and is defined
as

ov
V=—
0o
e The sensitivity to interest rates is known as rho and, unsurprisingly
to be
oV
="

e Finally, the sensitivity of the A to the underlying asset is known as
gamma and is defined as follows
0%V

052

Often these hedge parameters are used to see what would happen if there
was a small change in one of the parameters, this is important as both r
and o are not fixed or even time dependent in practice.

4.6 Implied volatility

One of the most important parameters, and the only one which is very
difficult to know for definite is the volatility, . There are several conventions
for calculating the volatility of an underlying asset. One would perhaps
assume that the best way is to look at the volatility of past returns and use
this as a decent guess as to what would happen in the future. However,
another way is to assume that the Black-Scholes analysis is correct and use
the market prices for options to back-out the volatility, using a suitable
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iterative procedure such as Newton-Raphson, the only unknown being o
itself.

If one attempts this they will see a problem with the volatility. Depend-
ing on how far in or out of the money the option is the volatility may well
not be constant for a given r, S, and ¢. So, not only is it dependent on
time but also on the exercise and asset prices. Such a result is often termed
the volatility smile although many other shapes can be observed depending
on the market conditions such as a frown, wry smile etc. This is another
example of the faults in the Black-Scholes model.
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