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Emergence of Lévy walks in systems of interacting individuals
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We propose a model of superdiffusive Lévy walk as an emergent nonlinear phenomenon in systems of
interacting individuals. The aim is to provide a qualitative explanation of recent experiments [G. Ariel et al.,
Nat. Commun. 6, 8396 (2015)] revealing an intriguing behavior: swarming bacteria fundamentally change their
collective motion from simple diffusion into a superdiffusive Lévy walk dynamics. We introduce microscopic
mean-field kinetic equations in which we combine two key ingredients: (1) alignment interactions between
individuals and (2) non-Markovian effects. Our interacting run-and-tumble model leads to the superdiffusive
growth of the mean-squared displacement and the power-law distribution of run length with infinite variance.
The main result is that the superdiffusive behavior emerges as a cooperative effect without using the standard
assumption of the power-law distribution of run distances from the inception. At the same time, we find that
the collision and repulsion interactions lead to the density-dependent exponential tempering of power-law
distributions. This qualitatively explains the experimentally observed transition from superdiffusion to the
diffusion of mussels as their density increases [M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014)].

DOI: 10.1103/PhysRevE.95.030107

Introduction. Lévy walk [1–3] is an important concept
which describes a wide spectrum of physical and biological
processes involving stochastic transport [4–10]. Cold atoms
moving in dissipative optical lattices [11], endosomal active
transport in living cells [12], and T-cells migrating in the
brain tissue [13] are just several examples where Lévy walks
were reported. It is argued that living organisms can use
Lévy transport to accelerate pattern formation [14] and to
optimize searching for sparse food [15–18]. Recently an
intriguing behavior of swarming bacteria was found: they
fundamentally change their collective motion from simple
diffusion into a superdiffusive Lévy walk dynamics [19]. The
extraordinary feature of this movement is that the emergence of
a superdiffusive motility is a result of the interactions between
bacteria rather than the standard mechanism of controlling the
individual frequency of tumbling. However, it is still an open
question how Lévy walks emerge in systems of interacting
self-propelled particles. The current theory of Lévy walk [8]
assumes noninteracting particles and power-law distribution
of traveled distances from the inception.

The collective behavior of large groups of interacting
individuals such as bird flocks, fish schools, and the collective
migration of cells or bacteria is another rapidly growing area of
active matter research [20–38]. There exist two main types of
models used for a collective behavior: (1) Lagrangian models
describing the movements of self-propelled particles in terms
of nonlinear equations for the positions and velocities of all
particles [20–23], and (2) kinetic models involving partial
differential equations for the population densities [24–30].
In this Rapid Communication we are only concerned with
the nonlinear kinetic and macroscopic equations. They have
been used to describe interactions between individuals and
investigate the formation of a large variety of spatiotemporal
self-organized aggregations. Most of these models converge
to the density-dependent diffusive transport and do not lead to
non-Markovian Lévy walks.

In this Rapid Communication we propose a kinetic non-
linear Lévy walk model for interacting individuals in which
the superdiffusion is an emerging collective phenomenon.

Importantly, we do not assume the power-law distribution
of traveled distances or running times with infinite second
moments from the inception. Motivated by the recent exper-
iments [19,39], we introduce microscopic mean-field kinetic
equations in which we combine two key ingredients: (1) the
turning rate that depends on alignment and collision inter-
actions between individuals and (2) non-Markovian effects.
The crucial problem here is how to incorporate nonlinear
interactions into non-Markovian superdiffusion. To implement
nonlinear effects we use the structural density approach
together with a population density-dependent turning rate.
This method has been used by the authors for the analysis
of subdiffusive random walks [40,41] and Lévy walks [42,43].

We take into account the interactions between walkers on
the mesoscopic level, at which the turning rate nonlocally
depends on the mean-field population density (nonlinear ef-
fect) and running time (non-Markovian effect). Our nonlinear
non-Markovian persistent random-walk model explains the
emergence of superdiffusive motion of bacteria within a
swarm. At the same time we find that collision interactions
lead to the transition from superdiffusion to the standard
diffusion through nonlinear tempering of the power-law
distribution of run distances. One should note that in this Rapid
Communication we do not consider a Lévy flight, which is a
simple Markovian random walk with a heavy-tailed step length
distribution.

Previously, anomalous behavior of active systems involv-
ing superdiffusion was observed in Lagrangian [21,22] and
hydrodynamic models [36,37]. In Lagrangian models [21,22]
superdiffusive behavior is transient. In hydrodynamic models
[36,37] it was found that the spreading of active particles in
the direction perpendicular to the direction of movement of
the swarm is superdiffusive. We should note that these models
do not correspond to a Lévy walk. They are fundamentally
different from our model in which the dependence of the
tumble (switching) rate on density and running time leads to a
Lévy walk in the mean direction of movement of the swarm.
Chepizhko and Peruani [44] found a subdiffusive motion of
active particles in an environment of randomly distributed
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pointlike obstacles. These particles were interacting with
obstacles which obstructed their motion and generated sub-
diffusive behavior similarly to the random Lorentz gas model
[45]. Also, we should mention the one-dimensional (1D)
models of active systems [38] and [46]. O’Loan and Evans
[38] introduced the interaction of particles by assuming that
the velocity of a particle is flipped with the probability which
depends on the velocity of the majority of the particles at the
site and its two nearest neighbors. They did not consider non-
Markovian effects and did not obtain anomalous superdiffusive
behavior. Schnitzer [46] introduced a hyperbolic random-walk
model in which a flipping (collision) rate depends on the
direction of motion. The essential difference between our
model and this chemotactic model is that the interactions of
particles and anomalous behavior were not considered in [46].

Nonlinear Lévy walk model in 1D. We consider prolif-
erating individuals moving either left or right along one-
dimensional space at a constant speed v. The key characteristic
of such random movement is the turning rate T, which
defines moments when individuals change their direction
of movements. The generalization for high dimensions is
outlined in the Supplemental Material [47]. The detailed
two-dimensional numerical simulations will be considered
in a future work. Note that 1D is enough to show that the
superdiffusion can be an emerging nonlinear phenomenon.

We introduce the structural densities of individuals,
n+(x,t,τ ) and n−(x,t,τ ), at location x and time t that move in
the right direction (+) or the left direction (−) during running
time τ since the last velocity switching [48]. The mean density
of individuals moving right, (+), and left, (−), are defined as

ρ±(x,t) =
∫ ∞

0
n±(x,t,τ )dτ, (1)

and the total density ρ(x,t) = ρ+(x,t) + ρ−(x,t).
To describe the random movement of individuals with

interactions, we assume that the rate T± at which individuals
change their direction of motion depends not only on running
time τ (non-Markovian effect) but also on the population
densities ρ+ and ρ− (nonlinear effect):

T±(τ,ρ+,ρ−) = μ±(ρ+,ρ−)

τ0 + τ
+ γ±(ρ∓), (2)

where τ0 is the time parameter. Inverse dependence of the first
term in T± on the running time τ leads to a strong persistence
of the random walk. The function μ±(ρ+,ρ−) describes the
alignment effects leading to cooperative movement of indi-
viduals in one direction. If, for example, an individual moves
to the right and senses that neighboring conspecifics move in
the same direction, then the likelihood of velocity switching
decreases. The positive function γ±(ρ∓) takes into account the
increase in the turning rate T± when the individuals avoid
the collisions with those moving in the opposite direction.
The external forces or chemotactic factors could be included
analogously to systems with subdiffusion [49,50]. Here we do
not consider these effects.

In this Rapid Communication we model the alignment
among individuals by the function

μ±(ρ+,ρ−) = μf (A±), (3)

with a nonlocal density-dependent function A±(x,t):

A± = a

∫
R

e−|z|/la [αρ±(x + z,t) − βρ∓(x + z,t)]dz. (4)

Here μ is the exponent of a power-law distribution in the
absence of nonlinear interactions (A± = 0), f (x) is a positive
and decreasing function of x with f (0) = 1, a is the strength of
interactions, and α, β are weight parameters. The decreasing
function f (A±) indicates that the turning rate T± is reduced
due to the presence of many conspecifics moving in the same
direction. This negative dependence plays the central role in
the transition from a standard random walk to a Lévy walk.
The kernel exp (−|z|/la) describes a strength of alignment per
unit density with the distance |z|; la is the characteristic length
of the interaction zone. To illustrate the effect of alignment,
let us consider the case α = β = 1 for which the nonlocal
function A+ for right-moving individuals can be rewritten in
terms of the flux J = v(ρ+ − ρ−). We can write

A+ = av−1
∫
R

exp

(
−|z|

la

)
J (x + z,t)dz,

so the increase in the flux J leads to an increase of alignment
effects and a decrease of turning rate T+. This indicates
the emergence of nonlinear persistence which, together with
running time persistence, can generate superdiffusive behavior.
Such modeling is in agreement with the observation that
the motion of swarming bacteria is mostly governed by the
collective flow of the bacteria and surrounding fluids [19].
Note that the advantage of moving in a large group in the
same direction is very similar to the “peloton” phenomenon
in a road bicycle race. Similar nonlocal dependencies of the
turning rate on the population density has been successfully
used to describe the animal spatial group patterns and bacterial
swarming in terms of the hyperbolic and kinetic models
[25,27–30].

The second term γ± > 0 in the turning rate T±, Eq. (2),
describes the collision and repulsion effects. We assume the
increase in the turning rate T± when individuals tend to avoid
collisions with many conspecifics moving in the opposite
direction:

γ±(ρ∓) = r

∫ ∞

0
exp

(
− z

lr

)
ρ∓(x ± z,t)dz, (5)

where lr is the effective repulsion size, and r is the strength
of repulsion. The similar repulsion rate has been well used
in the hyperbolic model [28] to obtain spatial patterns. In our
non-Markovian model, the role of the collision and repulsion
rate γ± is drastically changed. This term is responsible for
the shift from the superdiffusive Lévy walk to diffusion as the
density increases [39].

The nonlinear equations for the structural densities
n+(x,t,τ ) and n−(x,t,τ ) can be written as

∂n±
∂t

± v
∂n±
∂x

+ ∂n±
∂τ

= −T±(τ,ρ+,ρ−)n±. (6)

We use symmetrical initial conditions for which all individuals
start to move with zero running time

n±(x,0,τ ) = ρ(x,0)

2
δ(τ ). (7)
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The zero running time condition (τ = 0) includes the prolif-
eration of the individuals:

n±(x,t,0) =
∫ t

0
[T∓(τ,ρ+,ρ−)n∓ + k(ρ)n±]dτ, (8)

where k(ρ) is the density-dependent proliferation rate. This
condition corresponds to the case when newborn individuals
have zero running time. It is convenient to introduce the total
turning rates defined as

i±(x,t) =
∫ t

0
T±(τ,ρ+,ρ−)n±(x,t,τ )dτ. (9)

Differentiating (1) with respect to time t together with (7) and
(8) we derive the balance equations for the unstructured mean
densities ρ+(x,t) and ρ−(x,t):

∂ρ±
∂t

± v
∂ρ±
∂x

= −i±(x,t) + i∓(x,t) + k(ρ)ρ± (10)

(see Supplemental Material). For Lévy walks without interac-
tions, one can find

i±(x,t) =
∫ t

0
K(τ )ρ±(x ∓ vτ,t − τ )dτ,

where K(τ ) is the memory kernel determined by its Laplace
transform [42] K̂(s) � 1

T
(1 + Asμ−1) for 1 < μ < 2, as s →

0 (T is mean running time and A is a constant). For the
nonlinear case, the expressions for i± are not known. In what
follows we use numerical simulations to obtain our results.

Emergence of superdiffusion. To focus on the collective
movement and the underlying mechanism of the superdiffusive
behavior of the walkers, we neglect the repulsion effects (r �
a). Proliferation is also not a necessary ingredient, therefore
we consider nonproliferating walkers [k(ρ) = 0]; although,
numerical simulations show that proliferation increases the
effect by raising the population density. Since the turning
rate T±, Eq. (2), depends on both residence time τ and
time t (indirectly through ρ+ and ρ−), we cannot define the
running time probability density function (PDF). It can only
be done for the linear case when f = 1. For this classical
Lévy case the turning rate reads T(τ ) = μ/(τ0 + τ ) and
the running time PDF ψ(τ ) defined in the standard way
ψ(τ ) = T(τ ) exp [− ∫ τ

0 T(τ )dτ ] [51], becomes the power-law
density:

ψ(τ ) = μτ
μ

0

(τ0 + τ )1+μ
. (11)

For 1 < μ < 2, this PDF has a finite first moment and infinite
second moment. This case corresponds to anomalous subbal-
listic superdiffusion for which the mean-squared displacement
is 〈x2〉 ∼ t3−μ [1–3].

Importantly, for individuals interacting via alignment we
consider f 
= const and μ > 2 for which the system without
interactions has standard long-time diffusive behavior: 〈x2〉 ∼
t as t → ∞ [curve (1) in Fig. 2]. We do not assume the
anomalous running time PDF from the inception as is done
for a classical theory of superdiffusive transport [1–3]. In our
simulations we chose la = 1, α = 1, and β = 0 in Eq. (4), and
an exponential interaction function f (A±) = exp(−A±). For
α = β = 1 we obtain similar results. At t = 0 we consider a
uniform distribution of individuals in the interval (−1,1).

0.1 10
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1

(2) (1)

<
(x

-x
0)2 >

time

FIG. 1. Emergence of the Lévy walks when alignment dominates
repulsion. The log-log plot of the MSD [curve (2)] displays the
superdiffusive behavior with exponent 1.7 (dashed-dotted line).
We have used a = 1.5, α = 1, β = 0, and r = 0. Other parameters
are μ = 3, τ0 = 0.1, v = 1. Without interactions a = 0, r = 0 [curve
(1)], the MSD grows linearly in the long-time limit (dashed line has
the slope 1).

Figure 1 illustrates the emergence of the Lévy walk as
the ensemble-averaged mean-squared displacement (MSD)
[52] displays superdiffusive behavior [curve (2)]. For μ = 3
and a = 1.5, we find 〈(x − x0)2〉 � t1.7 (other parameters are
listed in the figure caption). Since the individuals disperse in
space, their density and therefore the strength of interactions
decrease with time. That is, f → 1 since A± → 0. As a
result, walkers perform normal diffusion at longer times
[curve (2)]. Figure 2 confirms the emergence of the Lévy
walk. It shows the power-law behavior of the run length
PDF with exponent −2.7 for the same parameters used in
Fig. 1. A typical trajectory of an individual involves long
runs displaying anomalous persistence (walkers collectively
move in one direction) [Fig. 3(b)]. The results of our model
(Figs. 1 and 2) qualitatively explain the emergence of the Lévy
walk observed experimentally for swarming bacteria [19]. We
show that the standard switching (run-tumble) behavior of
individuals is drastically changed due to a collective motion
that facilitates the Lévy walk [19]. Interestingly, the alignment
interactions lead to the creation of two groups of individuals
called clumps that move to the left and to the right [Fig. 3(a)].
This is in agreement with the clumping behavior observed
in nonlocal hyperbolic models for self-organized biological
groups [29]. For small interaction strength a → 0, there is no
clumping phenomenon [Fig. 3(b)].

Nonlinear transition from superdiffusion to diffusion. We
now ignore the alignment effects [f (A±) = 1] and focus on
the repulsion and collision interactions. It follows from Eq.
(2), the switching rate T± is defined as

T± = μ

τ0 + τ
+ γ±(ρ∓),

where the interaction term γ± is defined in (5). Note that now
we consider the case 1 < μ < 2. That is, without interactions
we have a subballistic superdiffusive Lévy walk with power-
law running time density, Eq. (11), and the MSD growing
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FIG. 2. (a) The run length PDF of the emerging Lévy walkers
[curve (2)]. Parameters are the same as in Fig. 1. The run length
PDF is a power law with the slope −2.7 (the dashed line), that is,
the variance of the PDF is infinite. For noninteracting walkers the
run length PDF is also a power law [curve (1)], but the slope is
−μ − 1 = −4 (the dotted line), so the variance is finite. (b) Typical
trajectory of interacting Lévy walkers (curve (2); for better clarity we
use a = 2.5) is very persistent, unlike the Brownian-like trajectory
for a walker without interactions [curve (1)].
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FIG. 3. (a) Alignment leads to the formation of two moving
aggregates known as clumps. Density of the walkers ρ (solid curve)
develops two bumps corresponding to groups of walkers moving
to the left ρ− (dashed curve) and to the right ρ+ (dashed-dotted
curve). Here a = 2.5 and other parameters are the same as in Fig. 2.
(b) For weak interactions, a → 0, we find no Lévy walks and
clumping behavior. The solid curve corresponds to a = 0.1. Without
interactions the density of walkers (dashed curve) is Gaussian apart
from tails. All densities were calculated at t = 3.
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FIG. 4. (a) The run length PDF of individuals interacting repul-
sively. Interactions lead to the transition to Brownian diffusion. Here
we use r = 103 and μ = 1.3. Other parameters and the simulation
procedure are the same. The run length PDF transitions from a power
law with exponent −μ − 1 for the Lévy walk without interactions
[curve (1)] to exponential distribution for the standard diffusion [curve
(2)]. (b) Typical trajectories of walkers with interactions [curve (2)]
and without interactions [curve (1)]. Repulsion interactions truncate
the long runs of the Lévy walks.

as 〈x2〉 ∼ t3−μ. We obtain explicit expressions for the total
turning rates i± in terms of the density of walkers (for the
derivation, see the Supplemental Material)

i±(x,t) =
∫ t

0
K(t − τ )ρ±(x ∓ v(t − τ ),τ )

× e− ∫ t

τ
γ±(ρ∓(x∓v(t−u),u))dudτ. (12)

It is clear from (12) that the rate γ± plays the role of a
tempering parameter. This term is responsible for the shift
of the superdiffusive Lévy walk toward standard diffusion
as the density ρ± increases. The tempering effect of the
repulsion and collision interactions is similar to the tempering
due to the random death of walkers [42]. Figure 4 shows the
results of numerical simulations corresponding to the rate (2)
with f (A±) = 1. In the absence of repulsion we consider a
superdiffusive Lévy walk with μ = 1.3. A typical trajectory
[Fig. 4(b)] has many long runs and the distribution of the
run length is a power law with exponent −μ − 1 [curve (1)
in Fig. 4(a)]. Repulsion and collision interactions drastically
change the stochastic dynamics of individuals. The long runs
are truncated and the trajectory appears Brownian [curve
(2) in Fig. 4(b)]. The run length PDF becomes exponential
[curve (2) in Fig. 4(a)], confirming the transition from a Lévy
walk to Brownian diffusion. Such a transition was observed
experimentally in the movement of mussels as their density
increases [39].

Summary. We have proposed a nonlinear persistent random-
walk model of collectively moving individuals that interact
via alignment and repulsion. The walkers’ interactions have
been taken into account on the mesoscopic level, at which the
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individuals’ turning rate depends on the mean-field population
density (nonlinear effect) and running time since the last
velocity switching (non-Markovian effect). The main result
of this Rapid Communication is that the nonlocal alignment
leads to the anomalous nonlinear persistence of the random
walkers and the emergence of the Lévy walk as a collec-
tive phenomenon. Importantly, this emergent superdiffusive
movement of individuals is a nonlinear non-Markovian effect,
and is not based on the standard assumption of a power-law
running time distribution from the inception. We should note
that non-Markovian effects are crucial, since the numerical
simulations of the Markovian nonlinear model show no Lévy
walks. We have qualitatively explained (1) the experimentally
observed emergence of superdiffusive Lévy walks of swarming
bacteria due to their collective dynamics and (2) the transition

from subballistic superdiffusion to the Brownian motion of
individuals interacting via repulsion and collision, which
was observed in the movement of mussels as their density
increases.

So far, most kinetic studies of a collective behavior
have focused on spatiotemporal self-organized aggregations
[24–30] and all of them do not deal with non-Markovian
Lévy walks. Here, we propose an interacting run-and-tumble
model where Lévy dynamics is an emergent collective
phenomenon. In this way, we establish a link between the
field of active matter and the field of anomalous Lévy
transport which opens new possibilities in both areas of
research.
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