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An asymptotic method is presented for the analysis of the traveling waves in the one-dimensional reaction-
diffusion system with the diffusion with a finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics. The
analysis makes use of the path-integral approach, scaling procedure, and the singular perturbation techniques
involving the large deviations theory for the Poisson random walk. The exact formula for the position and
speed of reaction front is derived. It is found that the reaction front dynamics is formally associated with the
relativistic Hamiltonian/Lagrangian mechanics.@S1063-651X~98!14710-4#
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Phenomena of the wave propagation in nonequilibri
media described by reaction-diffusion equations have
tracted considerable interest in a wide variety of scient
fields including physics, chemistry, biology, etc. Excelle
reviews of the work in this area can be found in the boo
@1–4#. Of fundamental interest is the rate at which the wa
propagates through the nonlinear dissipative system. The
sic common feature in many examples is that the trans
process determining the propagation rate is described by
conventional diffusion~Fick’s law!. In this case the propa
gation velocityu can be found from a simple dimension
analysis, that is,u;ADU, whereD is the diffusion coeffi-
cient andU is the characteristic reaction rate constant.

It is well known that the diffusion approximation give
rise to the infinite speed of heat/mass propagation, that i
a sudden change of temperature/concentration takes p
somewhere in the space, it will be felt immediately eve
where with an exponentially small amplitude. It is therefo
desirable to have a theory for nonlinear wave propagatio
which the boundness of the transport process would be ta
into account. The purpose of this paper is to present su
theory giving an asymptotic method for calculating t
propagation speed for the traveling wave in the reacti
diffusion system involving the diffusion with a finite velocit
@5–10# and the chemical kinetics of Kolmogorov-Petrovsk
Piskunov~KPP! type @1–4,11–17#.

Our starting point is a phenomenological system of
one-dimensional equations for the time evolution of the s
lar field r and its fluxJ,
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]J

]x
5Ur~12r!, ~1!

]J

]t
52

J2J0

t
, J052D

]r

]x
, ~2!

whereU is the reaction rate constant corresponding to
KPP kinetics,D is the diffusion coefficient corresponding t
Fick’s law, andt is the relaxation time. WhenU50, the
system~1!,~2! reduces to the telegraph equation@5–10#

t
]2r

]t2
1

]r

]t
5D

]2r

]x2
. ~3!

Whent50, we have the classical KPP equation@1–4#

]r

]t
5D

]2r

]x2
1Ur~12r!. ~4!

If we now solve Eq.~2! with the initial conditionJ(0,x)
50 we may eliminateJ from Eq. ~1! to obtain the single
equation forr,

]r

]t
5

D

t E0

t

expS 2
t2s

t D ]2r~s,x!

]x2
ds1Ur~12r!. ~5!

This equation may be considered as a generalization of
KPP equation~4! to the case in which the finite speed of th
transport process is taken into account (tÞ0).

We specify the following initial condition:

r~0,x!5u~x!, ~6!
5143 © 1998 The American Physical Society
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whereu(x) is a Heaviside functionu(x)51 for x,0 and
u(x)50 for x.0.

The basic problem is to find the traveling wave soluti
c(x2ut) to the problem~5!,~6!, wherec(z) is a monotoni-
cally decreasing function such thatc(2`)51 and c(`)
50, andu is the speed at which the wave profilec moves in
the positivex direction. For the KPP equation~4! (t50)
with the initial condition~6! the traveling wave moves with
the velocityu5A4DU @1–4#. We expect that for Eqs.~5!
and~6! the speedu5A4DU f (tU), wheref (z) is the dimen-
sionless function such thatf (0)51. It should be noted tha
our method of calculation will be nonperturbative in th
sense that we do not treat the relaxation timet as a small
parameter.

We are interested in the long-time large-distance beha
of the traveling wave solution of Eqs.~5! and ~6! as t→`
and x→` . It is convenient therefore to make the scali
@12–17#

t→
t

«
, x→

x

«
, ~7!

where« is a small parameter, and rewrite the Cauchy pr
lem ~5!,~6! for r«(t,x)5r(t/« , x/«) in the following form:

]r«

]t
5

D

t E0

t

expS 2
t2s

«t D ]2r«~s,x!

]x2
ds

1
U

«
r«~12r«!, r«~0,x!5u~x!. ~8!

It is clear from this equation that the scaling~7! describ-
ing a simultaneous contraction of time and space alte
tively corresponds to the rapid chemical reaction and s
transport process. We expect that after rescaling the w
profile develops into the reaction front:r«(t,x)5c@(x
2ut)/«)] tends to a unit step functionu(x2ut) as«→0.

Our goal is now to find a functionG(t,x) determining the
position of the reaction front, that is,

lim
e→0

r«~ t,x!5H 0 if G~ t,x!,0

1 otherwise.
~9!

In this paper we restrict ourselves to finding the upp
bound forr«(t,x) in the form

r«~ t,x!<expH G~ t,x!

« J as «→0. ~10!

Sincer«(t,x) varies in the interval@0,1# it is clear from Eq.
~10! that r«(t,x)→0 if G(t,x),0, «→0.

It follows from the property of the KPP kinetics in Eq.~8!
that

r«~ t,x!<w«~ t,x!expS Ut

« D , ~11!

wherew«(t,x) is a solution of the linear initial problem
or

-

a-
w
ve

r

]w«

]t
5

D

t E0

t

expS 2
~U1t21!~ t2s!

« D ]2w«~s,x!

]x2
ds,

w«~0,x!5u~x!. ~12!

Our strategy to find the functionG(t,x) is to analyze the
above Cauchy problem in terms of the probability theory a
thereby to obtain an estimate ofw«(t,x) in the limit «→0.
The basic idea is that we can deal with the problem~12! in
terms of the random walks of Poisson type@7–9#. If we
introduce the notationsc ~velocity! and n ~frequency! such
that

c25
D

t
, 2n5U1

1

t
, ~13!

then the solution of linear initial value problem~12! can be
written as an expectation value of the initial distributionu
@7,8#,

w«~ t,x!5Eu„x~ t !…, ~14!

where E is the expectation operator andx(t) is a random
Poisson walk, i.e., a solution of the stochastic differen
equation

dx

ds
5vS s

« D , x~0!5x, 0,s,t ~15!

where v(s) is the Markovian dichotomous velocity takin
only two values$c,2c% with the frequencyn @18#. From the
probabilistic point of view the key factor underlying the no
local character of Eq.~12! is that the dynamics ofx(t) is
non-Markovian@18#. To obtain an estimate ofw«(t,x) as«
→0 we need to know an explicit expression forw«(t,x) as a
path integral@19#,

w«~ t,x!5E u„x~ t !…P@x~• !#Dx, ~16!

whereP@x(•)# is a conditional probability density functiona
for the random processx(s),

P@x~• !#5E dFdx

ds
2vS s

« D GP@v~• !#Dv,

whered@•# is the d functional that is the extension of th
ordinary d function to the functional integration@19#. By
using Eq. ~16! and the formalism based on the auxilia
function u @20,21# we can write down the following expres
sion for w«(t,x):

w«~ t,x!5E E E u„x~ t !…expH i E
0

t

u~s!Fdx

ds
2vS s

« D GdsJ
3P@v~• !#Dv DuDx. ~17!

In the ‘‘weak noise limit’’«→0 one can get the following
estimate forw«(t,x) ~the details of calculation involving the
large deviations theory for the Poisson random walk w
appear elsewhere!:
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w«~ t,x!;expH 2
1

«
min

x~0!5x;x~ t !50
E

0

tS p
dx

ds
2H~p! DdsJ ,

~18!

where the functionH(p) has the form of the relativistic
Hamiltonian@22#

H~p!5cAm2c21p22n, ~19!

with the ‘‘effective mass’’m5nc22. One can rewrite Eq
~18! in terms of the relativistic Lagrangian@22#

w«~ t,x!;expH 2
1

«
min

x~0!5x;x~ t !50
E

0

t

L dsJ , ~20!

where

L52mc2A12
1

c2S dx

dsD
2

1n . ~21!

We are now in a position to complete the derivation of t
function G(t,x) determining the reaction front position an
its speed. One finds after straightforward calculation that
optimal trajectory giving the minimum in Eq.~20! is x(s)
52 (x/t) s1x and the corresponding minimal action
2mc2tA12 (1/c2) (x/t)21nt. By using Eqs.~10!, ~11!, and
~20! and the relationm5nc22 we obtain

G~ t,x!5Ut2nt1ntA12
1

c2S x

t D
2

. ~22!

EquatingG(t,x) to 0 we obtain the position of reactio
front x(t),

x~ t !5ut, u5cA12S n2U

n D 2

, U<n. ~23!
i-

.

d

s

e

Taking into account Eq.~13! the speed of the reaction frontu
can be rewritten in terms of the phenomenological para
etersD andt,

u5
A4DU

11tU
, tU<1. ~24!

We suggest thatu5AD/t whentU.1. It follows from Eqs.
~23! and ~24! that the speedu takes the maximum valuec
5AD/t, whentU51 or U5n. If the velocity of propaga-
tion c were infinitely great and the timet were infinitely
small such thatD5c2t5const~the diffusion approximation
for the random walk of Poisson type!, Eq.~23! would merely
give u5A4DU—the classical result of the KPP theor
@1–4#.

In summary, we have derived theexact formula for the
position and speed of the reaction front in the on
dimensional dissipative system involving the diffusion with
finite velocity and the KPP kinetics. It has been found th
the reaction front dynamics for such a system can be
mally associated with the relativistic Hamiltonian
Lagrangian mechanics. There are several possible direct
to explore by the method developed here. First one m
study the influence of nonuniform distribution of the reacti
rate constantU which might induce the jumps of reactio
fronts @11#. One can also extend the analysis to describe
interaction between the turbulent diffusion with a finite v
locity @10# and the KPP kinetics in the three-dimension
space@17#.

The author would like to thank Rupert Klein and Alex
ander S. Mikhailov for interesting and helpful discussion
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