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In this article we address the problem of magnetic field generation and front propagation in turbulent elec-
trically conducting fluids, involving the velocity with finite correlations times and small magnetic diffusivity.
We suggest an integro-differential dynamo equation which involves the non-local terms for both the dynamo
source �-term and turbulent transport of the mean magnetic field. We derive a set of formulas which allows
us to determine the rate of magnetic front propagation in galaxies valid for arbitrary memory kernels. We
illustrate the general results through the use of the exponential correlation functions for memory kernels
and ‘no-z’ approximation. We find that the memory effects have strong influence on for both the growth
rate and propagation speed. We perform numerical simulations of exterior front speed, and find that the
transport memory essentially decreases the propagation rate.
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1 INTRODUCTION

An important area of research in dynamo theory is the determination of the speed at
which magnetic fronts propagate in a turbulent electrically conducting fluid (see
Ruzmaikin et al., 1988; Moss et al., 1998, 2000; Petrov et al., 2001). This problem is
usually studied on the basis of a mean-field dynamo equation for a large scale magnetic
field Bðx, tÞ (see, e.g. Moffatt, 1978; Krause and Rädler, 1980; Zeldovich et al., 1983),
namely

@B

@t
¼ JTð�BÞ þ ��Bþ JTðuTBÞ, ð1Þ

where u is the mean velocity field , � is the coefficient describing the �-effect, and � is
the turbulent magnetic diffusivity. The mean-field dynamo equation (1) emerges from
an asymptotic analysis of Maxwell’s equations for a electrically conducting fluid.
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This analysis exploits the assumption of two separated scales for the turbulent velocity
field which varies only on the large integral length scale and the small scale. The corre-
lation times of a random velocity are assumed to be zero. Despite these facts, the mean
field dynamo equation has often been used for a turbulent flow involving a continuous
range of both spatial and temporal scales. Finite correlation time effects in the turbulent
dynamo have recently been studied by Kleeorin et al. (2002).
It turns out that Eq. (1), in the thin-disk approximation, can be reduced to the

classical Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation for the azimuthal
magnetic field (see Ruzmaikin et al., 1988; Moss et al., 1998). It is well known that the
FKPP equation is the simplest model describing the propagation of fronts into an
unstable state (see Murray, 1989). It has been found that the minimal propagation
speed for a magnetic front is u ¼ 2

ffiffiffiffiffiffi
��

p
, where � is the linear growth rate for the

mean magnetic field. However, from a physical point of view, the FKPP equation
has a disadvantage that leads to an overestimation of the minimal speed u. The
reason for this is that the diffusion term ��B gives rise to an infinite speed of propaga-
tion: the solution B x, tð Þ of (1) with a point source at x ¼ 0 and t ¼ 0 is non-zero no
matter how small t and how large x become. The reason for this anomaly is due to
the fact that the correlation functions of the turbulent velocity field are assumed to
be a delta correlated in time. One way to overcome this problem is to modify the trans-
port process based on the turbulent diffusion approximation by taking into account
memory effects. It is our intention to introduce the mean-field dynamo theory involving
the transport processes with finite velocity correlations times. In what follows we show
that the simple formula u ¼ 2

ffiffiffiffiffiffi
��

p
overestimates the propagation rate of exterior mag-

netic front. A detailed discussion of advantages and shortcoming of the FKPP equation
can be found in the reviews by Hadeler (1998) and Fort and Méndez (2002).
Recently, Fedotov et al. (2002) have developed a phenomenological dynamo theory

involving turbulent flow with finite correlation times. A fundamental problem in
turbulent dynamo theory is the prediction of the rate � at which the turbulent flow
generates a magnetic field. It has been shown that finite correlations and corresponding
memory effects can drastically change the dynamo growth rate. In what follows we will
be concerned with the question: how do memory effects influence magnetic front
propagation?
The non-local mean field dynamo equation which we shall study is a generalization

of (1) given by

@B

@t
¼

Z t

0

JT

Z
F�ðx� y, t� sÞBðy, sÞ dy

� �
ds

�

Z t

0

JT

Z
F�ðx� y, t� sÞJTBðy, sÞ dy

� �
dsþ JTðuTBÞ þ �m�B ,

ð2Þ

where F�ðx� y, t� sÞ and F�ðx� y, t� sÞ are the kernels describing the memory and
long range interaction effects of the turbulent flow with a continuous range of spatial
and temporal scales, �m ¼ c2=4�� is the magnetic diffusivity and � is the electric
conductivity. The phenomenological derivation of (2) and a discussion of F� and F�

are given in Section 2. It should be noted that the local dynamo equation (1) can be
derived from (2) under the approximations F�ðx� y, t� sÞ ¼ �	ðx� yÞ	ðt� sÞ,
F�ðx� y, t� sÞ ¼ �	ðx� yÞ	ðt� sÞ, and � >> �m: In this article we shall only consider
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the kinematic aspect of the problem, when the back reaction of the magnetic field on
the turbulent flow and the dependencies of F� and F� on magnetic field B are neglected.
Our formulation and emphasis are primarily motivated by astrophysical applications,
including the generation and propagation of magnetic fields in disk galaxies (see
Beck et al., 1996).

2 MEAN FIELD EQUATION WITH MEMORY AND

LONG RANGE INTERACTIONS

The aim of this section is to give a heuristic derivation of the mean field equation (2)
involving integrals over space and time. The starting point is the equation

@B

@t
¼ JTE þ JTðuTBÞ þ �m�B, ð3Þ

where E is the turbulent electromotive force

E ¼ u0TB0
� �

: ð4Þ

Here primes denote the turbulent fluctuations of the corresponding quantities, and the
angular brackets denote an ensemble averaging. The main closure problem here is to
express E in terms of the mean magnetic field B: Let us find this expression by using
an approximate equation for the fluctuations of the magnetic field B0:

@B0

@t
¼ JTðu0TBÞ þ �m�B

0: ð5Þ

It should be noted that we have omitted several terms in this equation: JTðuTB0þ

u0TB0 � hu0TB0iÞ. This approximation is often adopted and the detailed discussions
can be found in Section 7.5 of Moffatt (1978) and Section 3.6 of Krause and Rädler
(1980). By solving this equation with a zero initial condition, one can get the following
expression for B0 as a functional of u0 and B

B0ðx, tÞ ¼

Z t

0

Z
Gðx� y, t� sÞJT½u0ðy, sÞTBðy, sÞ � dy ds, ð6Þ

where Gðx� y, t� sÞ is the three-dimensional Green’s function for the diffusion
equation with appropriate boundary conditions. Substitution of (6) into (4) gives

Eðx, tÞ ¼

Z t

0

Z
Gðx� y, t� sÞhu0ðx, tÞxJT½u0ðy, sÞTBðy, sÞ�i dy ds: ð7Þ

It is well known that the turbulent electromotive force E can be regarded as a linear
functional of B and JTB (see Krause and Rädler, 1980). The general expression for
such a functional can be written as

Eðx, tÞ ¼

Z t

0

Z
F�ðx� y, t� sÞBðy, sÞ dy ds�

Z t

0

Z
F�ðx� y, t� sÞJTBðy, sÞ dy ds: ð8Þ
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To find the explicit expressions for the kernels F�ðx� y, t� sÞ and F�ðx� y, t� sÞ it is
necessary to specify statistical properties of random velocity field u0: We assume that
the turbulent flow is homogeneous and isotropic, then by using (7) and (8) one can find

F�ðx� y, t� sÞ ¼ �1
3
Gðx� y, t� sÞ u0ðx, tÞEJTu0ðy, sÞ

� �
, ð9Þ

F�ðx� y, t� sÞ ¼ 1
3
Gðx� y, t� sÞ u0ðx, tÞEu0ðy, sÞ

� �
: ð10Þ

The details of derivation of (9), and (10) can be found in Section 3.6 of Krause
and Rädler (1980). We see that E can be completely determined if we know the two-
point correlation functions u0ðx, tÞEJTu0ðy, sÞ

� �
and u0ðx, tÞEu0ðy, sÞ

� �
: The standard

approximation of delta-correlations in time

u0ðx, tÞEJTu0ðy, sÞ
� �

¼ �3� 	ðt� sÞ , ð11Þ

u0ðx, tÞEu0ðy, sÞ
� �

¼ 3� 	ðt� sÞ ,

and the limit �m ! 0 gives us a classical expression for the electromotive force E,
namely

Eðx, tÞ ¼ �B� �JTB, ð12Þ

where � and � stand for the phenomenological parameters that play a main role in
dynamo theory.
Substitution of (8) into (3) gives us the integro-differential equation (2). In what

follows we use this equation to give an illustration on the novel effects that can
occur as a result of the non-locality of (2).

3 MAGNETIC FIELD GENERATION AND FRONT PROPAGATION

In this section we focus our attention on the limit of an infinitely large conductivity
ð� ! 1Þ, with the implication that the magnetic diffusivity �m ¼ c2=4�� can be
neglected. This case is of special interest for many problems of physics of plasma, astro-
and geophysics (see Krause and Rädler, 1980). The functions F� and F� appearing
in the expression for the turbulent electromotive force E can then be written as

F�ðx� y, t� sÞ ¼ �ðxÞG�ðt� sÞ	ðx� yÞ, ð13Þ

F�ðx� y, t� sÞ ¼ �ðxÞG�ðt� sÞ	ðx� yÞ, ð14Þ

where G� and G� are the memory kernels. It should be noted that the wave analysis
of the integro-differential equation (2) with the arbitrary kernels F� and F� describing
the long range interaction and memory effects can be done according to the recent
theory of Fedotov and Okuda (2002). However, we believe that for the magnetic
front propagation problem it is more important to take into account memory effects
rather that the long range interaction in space. It is clear from (9) and (10) that
delta-correlations in space follow from the limit �m ! 0 when the Green’s function
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for the diffusion equation becomes a delta-function. In astrophysics, the ratio of the
magnetic diffusivity �m ¼ c2=4�� and turbulent diffusivity � is a small parameter that
might lead to insignificant corrections of propagation speed.
Let us discuss the influence of the non-local in time effects by considering an example

of magnetic field generation in a thin disc. This example appears to be very useful for
astrophysics, describing disc galaxies as a thin turbulent slab of the thickness 2h and
radius R (R � h) which rotates with the angular velocity !ðrÞ (see Beck et al., 1996).
It is convenient to consider the polar cylindrical coordinates (r, ’, z) with z-axis coin-
cident with the rotation axis. For simplicity, we neglect the effects of compressibility,
diamagnetism and deviations from the axial symmetry, and assume that � ¼ �ðzÞ and
that � is constant. The governing equations for the mean axisymmetric magnetic
field follow from (2), (13), and (14). They are

@Br

@t
¼ �

Z t

0

@

@z
�ðzÞG�ðt� sÞB’

� �
ds

þ �

Z t

0

G�ðt� sÞ
@2Br

@z2
þ

@

@r

1

r

@

@r
ðrBrÞ

� �	 

ds ,

ð15Þ

@B’

@t
¼ gBr þ

Z t

0

@

@z
�ðzÞG�ðt� sÞBr½ � ds

þ �

Z t

0

G�ðt� sÞ
@2B’

@z2
þ

@

@r

1

r

@

@r
rB’

� �� �	 

ds ,

ð16Þ

where g ¼ r d!=dr is the measure of differential rotation. Here we are only interested
in the Br and B’ components of the magnetic field B, since Bz=Br, ’ ¼ Oðh=RÞ. These
components obey the so-called vacuum boundary conditions. Since there are no electric
currents outside the disk, for axisymmetric solutions we have Br,’ðt, r, z ¼ �hÞ ¼ 0: The
detailed discussion of this approximate boundary condition can be found in the books
by Zeldovich et al., p. 151 (1983) and Ruzmaikin et al., p. 182 (1988).
Now we are in a position to discuss the problem of magnetic front propagation in

spiral galaxies. The wavefronts are special solutions to the Eqs. (15) and (16) that
travel with constant shape and speed connecting an unstable initial state and a stable
final state. It has been shown (see Murray, 1989) that a sufficiently localized initial
disturbance evolves asymptotically (t ! 1) into a travelling monotonic wavefront.
The speed u at which the front propagates into an unstable state is referred to as the
selected speed. Let us assume that the dynamo excitation occurs within a certain
radius r � r0, then the magnetic front propagates into the region r > r0: The growth
rate � is assumed to remain positive for r > r0. This type of magnetic front is referred
to as an exterior front (Moss et al., 2000). Our aim is now to find the propagation rate
of the magnetic front that develops after some transient period of time. Since we are
interested in the long-time large-distance asymptotic limit, it is convenient to consider
the case when t ! 1, r ! 1: The great advantage of considering the exterior front is
that its propagation rate can be found from linear analysis (Murray, 1989). Because
of the great difference between vertical and horizontal dimensions of the spiral
galaxies, we assume that the ratio " ¼ h=R tends to zero. This allows us to
consider the asymptotic limit r ! 1, which should be considered as the intermediate
one. We also assume that h=r0 ! 0, and, therefore, the terms proportional to 1=r2 and
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1=r can been neglected in the Eqs. (15) and (16). In this case we consider the propaga-
tion of the effectively plane magnetic front neglecting all curvature effects.
To obtain the rate of propagation we are going to apply the general technique

developed by Ebert and Saarloos (2000) and Fedotov (2001). We first illustrate it
using the relatively simple example of the linearized FKPP equation for the scalar
field ’ðt, xÞ, namely

@’

@t
¼ �

@2’

@x2
þ �’: ð17Þ

We are looking for a solution in the exponential form

’ ¼ ’0 expðEt� prÞ: ð18Þ

Substituting (18) into (17) gives the equation for the effective Hamiltonian function
HðpÞ ¼ E, namely

HðpÞ ¼ �p2 þ �: ð19Þ

It follows from the general theory of wave propagation into an unstable state
(see Ebert and Saarloos, 2000; Fedotov, 2001) that the propagation rate u can
determined by

u ¼
H pð Þ

p
¼

dH pð Þ

dp
: ð20Þ

From (19) and (20) we easily find the classical result u ¼ 2
ffiffiffiffiffiffi
��

p
with p ¼

ffiffiffiffiffiffiffiffi
�=�

p
:

The momentum p can be interpreted as the inverse characteristic width of the travel-
ling wave.
Now let us consider the system (15) and (16) and find its solution in the following

form

Br ¼ brðzÞ expðEt� prÞ, ð21Þ

B’ ¼ b’ðzÞ expðEt� prÞ: ð22Þ

Substitution of (21) and (22) into (15) and (16) gives an one-dimensional eigenvalue
problem for br zð Þ and b’ zð Þ, namely

Ebr ¼ �
d

dz
�EðzÞb’
� �

þ �E
d2br

dz2
þ �Ep

2br, brðz ¼ �hÞ ¼ 0, ð23Þ

Eb’ ¼ g br þ
d

dz
�E zð Þbr½ � þ �E

d2b’

dz2
þ �Ep

2b’, b’ðz ¼ �hÞ ¼ 0: ð24Þ

Here we have introduced the parameters �EðzÞ and �E , namely

�EðzÞ ¼ �ðzÞĜG�ðEÞ, �E ¼ �ĜG�ðEÞ ð25Þ
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and the Laplace transforms of the corresponding kernels ĜG�ðEÞ and ĜG�ðEÞ, namely

ĜG�, �ðEÞ ¼

Z 1

0

G�, �ðsÞ exp �Es½ � ds: ð26Þ

If we put p ¼ 0 in (23) and (24), we get the classical generation equations (see
Zeldovich et al., 1983). When p 6¼ 0 Eqs. (23) and (24) can be rewritten in a very
useful form

E � �Ep
2 ¼ �

1

br

d

dz
�EðzÞb’
� �

þ
�E

br

d2br

dz2
¼ � , brðz ¼ �hÞ ¼ 0, ð27Þ

E � �Ep
2 ¼

g br

b’
þ
1

b’

d

dz
�EðzÞbr½ � þ �E

d2b’

dz2
¼ �, b’ðz ¼ �hÞ ¼ 0: ð28Þ

It follows that if we find the largest eigenvalue of the above problem, namely

� ¼ f ðEÞ, ð29Þ

then the Hamiltonian HðpÞ ¼ E corresponding to (15) and (16) can be found from the
equation

H � �Ep
2 ¼ f ðHÞ, ð30Þ

since E � �Ep
2 ¼ � (see Eqs. (27) and (28))

In principle, the formulas (20), (29) allow us to determine the rate of propagation u
of fronts outward from central regions for arbitrary time-correlation functions G� and
G�, provided we know the largest eigenvalue � ¼ f ðEÞ of the problem (27), (28).
The propagation rate u can then easily be found numerically.
It should be mentioned that for real galaxies the local growth rate � decreases

slowly with radius, approximately as 1=r: It is often assumed that � � !, where ! is
the angular velocity of rotation. Since � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� rd!=dr

p
, we have � � ! with ! � 1=r

at large r: It appears that the average propagation rate should be lower than the predic-
tion of our asymptotic theory with � constant. One can also treat the radius r as
a parameter. Then the position of magnetic front rðtÞ can be found from a simple
equation dr=dt ¼ uðrðtÞÞ, where uðrÞ is given by (20). It is clear that the propagation
rate is not a constant anymore. An estimate of time dependence of propagation rate
can be found from the following arguments. Since u �

ffiffiffiffiffiffiffiffi
�ðrÞ

p
with � � 1=r,

dr=dt � r�1=2ðtÞ implies rðtÞ � t2=3 and uðtÞ ¼ dr=dt � t�1=3 for large t:

4 EXPONENTIAL MEMORY KERNELS

Let us illustrate the above theory by using exponential forms for the kernels G� and G�,
namely

G�ðt� sÞ ¼
1

��
exp �

t� s

��

� �
, G�ðt� sÞ ¼

1

��
exp �

t� s

��

� �
: ð31Þ
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We introduce the following dimensionless variables

z ! z=h, t ! �t=h2, � ! �0�ðzÞ, ð32Þ

and parameters

T� ¼ �0��=h, T� ¼ ���=h
2, R� ¼ �0h=�, R! ¼ gh2=�: ð33Þ

Let us note that the example of the �!-dynamo corresponds to the case: R� � jR!j.
The field generation equations in these notation take the form

� br ¼ �
R�

1þ �T�=R�

d

dz
�ðzÞb�
� �

þ
1

1þ �T�

d2br

dz2
, ð34Þ

� b’ ¼ Rw br þ
R�

1þ �T�=R�

d

dz
�ðzÞbr½ � þ

1

1þ �T�

d2b’

dz2
, ð35Þ

where the parameter � stands for the dimensionless growth rate of magnetic field. In the
case when T�, � ¼ 0, the eigenvalue problem (34) and (35) reduces to a well-known form
(see Zeldovich et al., 1983). Otherwise, the eigenvalue � becomes a function of the
dimensionless correlation times T� and T�. By using the renormalized parameters
~�� ¼ �ð1þ �T�Þ, ~RR! ¼ R!ð1þ �T�Þ, ~RR� ¼ R�ð1þ �T�Þ=ð1þ �T�=R�Þ, � can be easily
determined from the following problem

~�� þ
d2

dz2

� �
br ¼ � ~RR�

dð�b’Þ

dz
, ~�� þ

d2

dz2

� �
b’ ¼ ~RR!br þ ~RR�

dð�brÞ

dz
,

br, ’ðz ¼ �hÞ ¼ 0:

ð36Þ

The eigenvalue problem (36) corresponds to the generation equations in the local
mean field dynamo theory (see Zeldovich et al., 1983). The difference is that the
renormalized parameters ~��, ~R�R� and ~R!R! are dependent upon the growth rate �. It is
well known that the behaviour of magnetic field depends on the value of so-called
dynamo numbers R� and R! ðR��1�10,R! �10� 103Þ: The asymptotics of large
R!=R� gives (see Zeldovich et al., 1983)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T�=R�

p� �
’

ffiffiffiffiffiffiffiffi
�D

p
� const � �ðT�, � ¼ 0Þ, D ¼ R!R�, ð37Þ

where the constant coefficient has to be determined by the function �ðzÞ. An explicit
form is given in the book by Zeldovich et al. (1983). In this case, the contribution
from the non-locality in the �-term is weak due to the large values of D; however,
the non-locality in the dynamo �-source plays a significant role (Fig. 1) and leads to
a significant decrease in the dimensionless growth rate �.
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5 SIMPLE ‘NO-Z’ MODEL

In this section we consider a galactic disc with a uniform semi-thickness h: To simplify
the basic Eqs (15) and (16) we use the so-called ‘no-z’ model of Moss (1995). The main
idea of this model is to replace the z-derivatives by inverse power of h. The ‘no-z’ model
has been widely used to study galactic dynamos, and appears to be adequate to most
observations of the magnetic field generation in disc-like galaxies (see Beck et al.,
1996). Taking into account the memory effects, the dynamo equations for the radial
Br and the azimuthal B’ components of an axisymmetric magnetic field in the ‘no-z’
approximation can be written as

@Br

@t
¼ �

�0
��h

Z t

0

exp �
t� s

��

� �
B’ dsþ

�

��

Z t

0

exp �
t� s

��

� �
�rBr �

Br

h2

� �
ds, ð38Þ

@B’

@t
¼ gBr þ

�0
��h

Z t

0

exp �
t� s

��

� �
Br dsþ

�

��

Z t

0

exp �
t� s

��

� �
�rB’ �

B’

h2

� �
ds: ð39Þ

In the standard thin disk approximation, the Bz component is small (Bz=Br ¼ Oðh=RÞÞ
and can therefore be ignored. When the correlation times �� and �� are zero, these
equations coincide with those in Moss et al. (1998). By using the same notation as
in Eqs. (34) and (35) and setting r ! r=h, one can rewrite Eqs. (38) and (39) in the
following non-dimensional form

@Br

@t
¼ �

R�

T�

Z t

0

exp �
R�

T�
ðt� sÞ

� �
B’ dsþ

1

T�

Z t

0

exp �
t� s

T�

� �
�rBr � Br½ � ds, ð40Þ

@B’

@t
¼ R!Br þ

R�

T�

Z t

0

exp �
R�

T�
ðt� sÞ

� �
Br dsþ

1

T�

Z t

0

exp �
t� s

T�

� �
�rB’ � B’

� �
ds:

ð41Þ

FIGURE 1 Dependence of the growth rate � on the �-correlation time T� (T� ¼ 0) for the dynamo
parameters: R� ¼ 2, R! ¼ �40 (curve 1); 2, � 100 (curve 2); 4, � 100 (curve 3).
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Looking for a solution of the form Br ¼ br expð�tÞ, B’ ¼ b’ expð�tÞ, one can find
the characteristic equation for the dimensionless growth rate �:

� þ
1

1þ �T�

� �2
¼ �

R�

ð1þ �T�=R�Þ
R! þ

R�

ð1þ �T�=R�Þ

� �
: ð42Þ

In the limit T� ! 0 and T� ! 0 we find

� ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R�ðR! þ R�Þ

p
: ð43Þ

For the �!-dynamo (R� � jR!j) the growth rate is given by � ¼ �1þ
ffiffiffiffiffiffiffiffi
�D

p
, where

D ¼ R�R! is the dynamo number. It should be noted that the critical value Dcr ¼ �1
does not depend on memory effects. The dependency of � on the relaxation time, for
the same system parameters as in Fig. 1, are shown in Fig. 2. A comparison of the
results presented in Figs. 1 and 2 confirms that the ‘no-z’ model is indeed a good
approximation for the large dynamo numbers. However, for dynamo numbers in the
neighbourhood of the critical value for full model Dcr ¼ ��4=16, at which the genera-
tion of magnetic field occurs, the results of the full model and those of the ‘no-z’ model
are different. This discrepancy can be explained by the fact that ‘no-z’ model gives us an
averaged description along the z-direction. It should be noted the discrepancy near
D ¼ Dcr can be reduced by replacing @2B=@z2 by �ð�2=4h2ÞB rather than �ð1=h2ÞB
(Phillips, 2000).
Let us now analyze the exterior front propagation in the disk plane (Moss et al.,

2000). We assume that at the moment t ¼ 0 the magnetic field B is

B ¼ 0, if r > r0; B ¼ B0, if r � r0: ð44Þ

We expect that this initial compact distribution develops into a travelling wave as
t ! 1: Let us find the solution of the system (38) and (39) in the form

Br ¼ br expðEt� prÞ, ð45Þ

B’ ¼ b’ expðEt� prÞ: ð46Þ

FIGURE 2 The same as on Fig. 1 for the growth rate � calculated by ‘‘no-z’’ model.
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The dispersion relation determining the energy E ¼ HðpÞ as a function of the momen-
tum p is

H þ
1� p2

1þHT�

� �2
¼ �

R�

ð1þHT�=R�Þ
R! þ

R�

ð1þHT�=R�Þ

� �
: ð47Þ

Again one can use (47) and the formulas (20) to determine the propagation rate u.
It is convenient to consider the case when T� ¼ 0, but T� 6¼ 0 (�� ¼ 0, �� 6¼ 0Þ. It

turns out that in this case the integro-differential Eq. (2) with zero mean velocity
(u ¼ 0) can be rewritten as a hyperbolic equation of telegraph type. By using (13),
(14), and the exponential functions (31) with �� ¼ 0, �� 6¼ 0, and �m ¼ 0, one can
write (2) in the form

@B

@t
¼ JTð�BÞ þ

�

��

Z t

0

exp �
t� s

��

� �
�Bðx, sÞ ds: ð48Þ

Differentiation with respect to time t gives

��
@2B

@t2
þ

@

@t
½B� �� JTð�BÞ� ¼ JTð�BÞ þ ��B: ð49Þ

It is well known that this equation, unlike standard parabolic equations, corresponds
to a transport phenomena with a finite velocity of propagation equal to

ffiffiffiffiffiffiffiffiffiffi
�=��

p
.

Therefore, the integral non-local model (2) takes into account the fact that the propa-
gation of a magnetic field is characterized by a finite maximal velocity, which is
determined by the large turbulent eddies.
When T� ¼ 0, T� 6¼ 0, the positive solution of the dispersion relation (47) is

HðpÞ ¼
1

2T�
�ð1� wT�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wT�Þ

2
� 4T� þ 4T�p2

q� �
, ð50Þ

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R�ðR! þ R�Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�0h2

�2
ðghþ �0Þ

s
:

Using (20) one can find the dimensionless magnetic front propagation rate

u ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� 1

ð1þ wT�Þ
2
� 4T�

s
ð51Þ

An interesting feature of this formula is that if w ¼ 1 the propagation rate becomes
zero. This is a result of the zero boundary conditions that lead to the phenomenon
of propagation failure: when w < 1, the wave ceases to exist. When T� ¼ 0 the
propagation rate is u ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� 1Þ

p
. When T� increases, u decreases monotonically if

w > 2 and has the minimal value umin ¼
ffiffiffiffiffiffiffiffiffiffi
1=T�

p
, when wT� ¼ 1. It should be noted

that this velocity coincides with the velocity of hyperbolic waves in the Eq. (49) without
the �-source. When 1 < w < 2 the front velocity first increases with T�, then reaches
the maximum value vmax ¼ 2w, when T� ¼ 2w�2ð2� wÞ, then u decreases to the umin.
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Some results, illustrating the dependencies of u on T�, are shown in Fig. 3. In the limit
T� ! 0 and jR!j � R� the formula (51) reduce to the form given by Petrov et al.
(2001). This corresponds to the classical FKPP result: the speed of the exterior front
is 2

ffiffiffiffiffiffiffiffi
�G�

p
, where �G is the dimensional local growth rate of the dynamo.

Unfortunately there is no analytical solution of the dispersion relation (47) if T� 6¼ 0.
The velocity u as function of T� is presented in Fig. 4. If we compare Figs. 3 and 4,
we can see that T� provides a greater influence on the velocity u than T�: It is an inverse
situation to that of studying the dependency of the growth rate � on the relaxation time.
Therefore, memory effects do not lead to a simple renormalization of the phenomeno-
logical parameters � and �. Figure 5 illustrates the dependence of u on T ¼ T� ¼ T�.
To assess the significance of the memory effects it is useful to estimate the magnitudes

of T� and T�. First let us find the typical value of the parameter T� ¼ ���=h
2, where h is

the half-thickness of the gaseous disc ( h ’ 400 pc). The turbulent magnetic diffusivity is
given by � ’ lv, where v is the typical velocity of turbulent eddy, and l is the typical size
( l ’ 100� 200 pc). The relaxation time �� can be regarded as the typical turnover time,
and, therefore, �� ¼ l=v: This gives the estimate T� ’ ðl=hÞ2: It is clear that T� is

FIGURE 3 Relative front velocity uðT�Þ=u ðT� ¼ 0Þ vs turbulent transport correlation time T� (T� ¼ 0) for
the dynamo parameters: R� ¼ 1, R! ¼ �4:5 (curve 1); 1, � 20 (curve 2); 2, � 40 (curve 3); 4, � 100 (curve 4).

FIGURE 4 Relative front velocity uðT�Þ=u ðT� ¼ 0Þ vs �-correlation time T� (T� ¼ 0) for the dynamo
parameters: R� ¼ 2, R! ¼ �40 (curve 1); 4, � 40 (curve 2); 4, � 100 (curve 3).
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bounded by one, but is not necessarily a small parameter. Let us now estimate an
important parameter T� ¼ �0��=h describing the memory of �-effect. The typical
values of �0 are 1� 10 km s�1 (see Ruzmaikin et al., 1988), that is, �0 can be the
same order as the turbulent eddy velocity v (�0 � v). If we assume that �� ’ �� ¼ l=v
then the estimate for T� is given by T� � l=h � 1 (l=h � 0:25� 0:5 is plausible for
general orientation).

CONCLUSIONS

In this article we have discussed the problem of the magnetic field generation and front
propagation in electrically conducting fluids involving turbulent velocity with finite
correlation times and a small magnetic diffusivity. The main motivation for this has
been that the diffusion approximation for the turbulent transport process admits an
infinite speed of transport propagation, and as such leads to an overestimation of
the magnetic front propagation rate. We have suggested an integro-differential
dynamo equation involving non-local spatial and temporal terms for the dynamo
�-source and turbulent transport of the mean magnetic field. We have derived a
set of formulas which allows us to determine the rate of magnetic exterior front
propagation valid for arbitrary memory kernels. We have given an illustration of this
theory by using exponential correlation functions and a ‘no-z’ approximation. We
have performed a numerical simulation of the front speed and found that the transport
memory significantly decreases the propagation rate.
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