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Subdiffusion in an external potential: Anomalous effects hiding behind normal behavior
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We propose a model of subdiffusion in which an external force is acting on a particle at all times not only
at the moment of jump. The implication of this assumption is the dependence of the random trapping time on
the force with the dramatic change of particles behavior compared to the standard continuous time random walk
model in the long time limit. Constant force leads to the transition from non-ergodic subdiffusion to ergodic
diffusive behavior. However, we show this behavior remains anomalous in a sense that the diffusion coefficient
depends on the external force and on the anomalous exponent. For quadratic potential we find that the system
remains non-ergodic. The anomalous exponent in this case defines not only the speed of convergence but also
the stationary distribution which is different from standard Boltzmann equilibrium.
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I. INTRODUCTION

Recently it has become clear that anomalous diffusion
measured by a non-linear growth of the ensemble averaged
mean squared displacement 〈x2〉 ∼ tμ with the anomalous
exponent μ �= 1 is as widespread and important as normal
diffusion with μ = 1 [1]. Subdiffusion with μ < 1 was
observed in many physical and biological systems such as
porous media [2], glass-forming systems [3], motion of single
viruses in the cell [4], cell membranes [5,6], and inside
living cells [7–9]. Many examples of subdiffusive processes
in biological systems can be found in recent reviews [10,11].
Nowadays new tools are available including super-resolution
light optical microscopy techniques to deal with biological
in vivo data which allows to monitor a large number of
trajectories at the single-molecule level and at nanometre
resolution [12–14]. Using these techniques it is possible to
discriminate between anomalous ergodic processes where
the ensemble and time averages coincide and non-ergodic
processes where ensemble and time averages have different
behavior [15–17]. Two important observations have been
made about anomalous transport in living cells: (1) anomalous
transport is usually a transient phenomenon before transition
to normal diffusion or saturation due to confined space [18–20]
(2) ergodic and non-ergodic processes may coexist as it was
observed in plasma membrane [21].

Several models were proposed to describe ergodic and non-
ergodic anomalous processes such as non-ergodic continuous
time random walk (CTRW) with power-law tail waiting times,
ergodic anomalous process generated by fractal structures,
fractional Brownian-Langevin motion characterized by long
correlations and time-dependent diffusion coefficient, and
scaled Brownian motion [1,22–24]. The standard CTRW
model for subdiffusion of a particle in an external field
F (x) randomly moving along discrete one-dimensional lattice
can be described by the generalized master equation for the
probability density p(x,t) to find the particle at position x at
time t

∂p

∂t
= −i(x,t) + w+(x − a)i(x − a,t)

+w−(x + a)i(x + a,t), (1)

where a is the lattice spacing and i(x,t) is the total escape rate
from x

i(x,t) = 1

�(1 − μ)τμ

0

D1−μ
t p(x,t). (2)

Here τ0 is a constant time scale and D1−μ
t is the Riemann-

Liouville fractional derivative defined by

D1−μ
t p(x,t) = 1

�(μ)

∂

∂t

∫ t

0

p(x,τ )

(t − τ )1−μ
dτ. (3)

The probabilities of jumping to the right w+(x) and to the left
w−(x) are

w+(x) = 1
2 + βaF (x), w−(x) = 1

2 − βaF (x). (4)

Series expansion of Eq. (1) together with Eqs. (2) and (4) leads
to the fractional Fokker-Planck equation (FFPE) [25,26]

∂p

∂t
= Dμ

[
∂2

∂x2
− β

∂

∂x
F (x)

]
D1−μ

t p, (5)

where the generalized diffusion Dμ = a2/[2 �(1 − μ)τμ

0 ].
The stationary solution of Eq. (5) in a confining potential
is the Boltzmann distribution. There exist a huge literature on
this equation [25,26] and its generalization for time-dependent
forces [27–33].

One of the main assumptions in this literature, which is not
always clearly stated is that, as long as a random walker is
trapped at a particular point x, the external force F (x) does
not influence the particle. It is clear from Eq. (2) that the
escape rate i(x,t) does not depend on the external force F (x).
The force only acts at the moment of escape inducing a bias.
The question is how to take into account the dependence of
the escape rate on F (x)? To the author’s knowledge this is
still an open question. One of the main aims of this paper
is to propose a model which deals with this problem. We
find that the dependence of escape rate on force drastically
changes the form of the master equation (1) and FFPE (5).
We observe transient anomalous diffusion and transition from
non-ergodic to normal ergodic behavior. However, we show
that this seemingly normal process could be still anomalous
masked by normal behavior. Our findings suggest that a closer
inspection of experimental results could be necessary in order
to discriminate between normal and anomalous processes.
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II. RANDOM WALK MODEL

We consider a random particle moving on a one-
dimensional lattice under assumption that an external force
acts on a particle at all times not only at the moment of
jump as in Eq. (1). The implication of this assumption is
the dependence of the random trapping time on the external
force [not just jumping probabilities as in Eq. (4)]. Some
discussion of the situation when the external force influence
the rates and jumps can be found in [27]. The influence of the
time-dependent force on the non-Poisson two-state model was
considered in [34]. The authors of this paper considered the
dependence of the sojourn time distributions on the force.

The main physical idea behind our model is different.
We assume that there exists two independent mechanisms of
escaping from the point x with two different random residence
times. The first mechanism is due to external force with the
escape rate which we assume to be proportional to F (x).
The second one is the subdiffusive mechanism involving the
rate inversely proportional to the residence time. The latter
generates the power-law waiting time distribution with the
infinite first moment.

Regarding the first mechanism, we define the jump process
from the point x as follows. We assume that the rate of jump to
the rightT+

x from x to x + a is νaF (x) when F (x) � 0 and the
rate of jump to the left T−

x from x to x − a is −νaF (x) when
F (x) � 0. For this jump model the random waiting time TF at
the point x is defined by the exponential survival probability
�F (x,τ ) involving the external force F (x)

�F (x,τ ) = Pr {TF > τ } = exp (−νa|F (x)|τ ) , (6)

where ν is the intensity of jumps due to force field. For
example, one can think of the escape rate T+

x that is
defined in terms of the potential field U (x) that is T+

x =
−ν [U (x + a) − U (x)] > 0, there F (x) = −U ′(x) + o(a2)
for U ′(x) � 0. In this paper we consider the “weak force”
case for which the rate νa|F | is small enough such that

νa|F |τ0 � 1. (7)

The second mechanism involves the random walk escape rate
λ(τ ). In case of Poisson random walk this rate is constant
λ(τ ) = const. Here we consider the escape rate which is
inversely proportional to the residence time τ

λ(τ ) = μ

τ0 + τ
, (8)

where τ0 is a parameter with units of time. In this case the
random waiting time Tλ at the point x is defined by the survival
probability

�λ(τ ) = Pr {Tλ > τ } = exp

(
−

∫ τ

0
λ(s)ds

)
. (9)

It follows from Eqs. (8) and (9) that the survival function is

�λ(τ ) =
(

τ0

τ0 + τ

)μ

. (10)

The corresponding waiting time probability density function
(pdf) has a power-law dependence

ψλ(τ ) = −d�λ

dτ
= μτ

μ

0

(τ0 + τ )1+μ
. (11)

For μ < 1 the waiting time pdf ψλ(τ ) has infinite first moment
which corresponds to subdiffusion.

The question now is how to implement the jumping process
due to external force into the subdiffusive random walk
scheme? When the random walker makes a jump to the point
x, it spends some random time (residence time) before making
another jump to x + a or x − a. Let us denote this residence
time Tx . The key point of our model is that we define this
residence time as the minimum of two: Tλ and TF

Tx = min (Tλ,TF ) . (12)

For the anomalous subdiffusive case this model leads to the
drastic change in the form of the fractional master equation.
The main reason for this is that the external force F (x) plays
the role of tempering factor preventing the random walker from
been trapped at point x anomalously long. To see this we notice
that the survival probability corresponding to the random time
Tx , �(x,τ ) = Pr{Tx > τ }, is a product of Eqs. (6) and (10)

�(x,τ ) = �λ(τ )�F (x,τ ) = �λ(τ ) exp(−νa|F (x)|τ ). (13)

So, the waiting time probability density function ψ(x,τ ) =
−∂�(x,τ )/∂τ is given by

ψ(x,τ ) = ψλ(τ ) exp(−νa|F (x)|τ )

+�λ(τ )νa|F (x)| exp(−νa|F (x)|τ ). (14)

Note that this pdf is different from the standard one involving
exponential tempering factor [35]. In our case the tempering
is more complex. It has two terms and depends on the external
force. Because of the independence of two mechanisms, in our
model the rate of jumps T+

x to the right from x to x + a and
the rate of jumps T−

x to the left from x to x − a can be written
as the sum

T+
x =

{
ω+(x)λ(τ ) + νaF (x), F (x) � 0,

ω+(x)λ(τ ), F (x) < 0 (15)

and

T−
x =

{
ω−(x)λ(τ ), F (x) � 0,

ω−(x)λ(τ ) − νaF (x), F (x) < 0.
(16)

Although it is straightforward to consider general ω+(x) and
ω−(x), for simplicity in what follows we consider ω+(x) =
ω−(x) = 1/2. In our model the asymmetry of random walk
occurs only from the force dependent rates. Let us explain
the main idea of Eqs. (15) and (16). The external force
F (x) � 0 increases the subdiffusive rate of jumps to the right
and does not change the subdiffusive rate of jumps to the
left. The essential property of Eqs. (15) and (16) is that the
rate λ(τ ) depends on the residence time variable τ . This
dependence makes any model involving the probability density
p(x,t) non-Markovian. For the Markov case with F (x) = 0,

λ−1 has a meaning of the mean residence time. When the
parameter ν = 0 and the rates are T+

x = w+(x)λ(τ ), T−
x =

w−(x)λ(τ ), we obtain the standard fractional Fokker-Planck
equation (5). Notice that Eq. (12) is consistent with the ex-
pression for the effective escape rate T+

x + T−
x as a sum of two

rates λ(τ ) + νa|F (x)|. Similar situation has been considered
in [36].
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Markovian model

As an illustration let us consider a Markovian model for
which the rate of escape λ(x,τ ) is independent of the residence
time τ with the constant rate λ(τ ) = const. It follows from
Eqs. (15) and (16) and the assumption w+ = w− = 1/2 that
the master equation for the probability density p(x,t) takes the
form

∂p

∂t
= −λp(x,t) + λp(x − a,t)/2 + λp(x + a,t)/2 + �,

(17)

where

� =
{−νaF (x)p(x,t) + νaF (x − a)p(x − a,t), F � 0,

νaF (x)p(x,t) − νaF (x + a)p(x + a,t), F < 0.

(18)

Here we put τ0 = 1 assume that and F (x) and F (x + a) have
the same sign for small values of a. We expand the right-hand
side of a master equation (17) to second order in jump size a

and obtain the advection-diffusion equation

∂p(x,t)

∂t
= −νa2 ∂

∂x
[F (x)p] + λa2

2

∂2p

∂x2
+ o(a2). (19)

One can see that the dependence of the escape rate from the
external force F (x) leads only to the advection term. When the
force F (x) = −∂U (x)/∂x and ν = λ/(2kBT ) (here kB is
the Boltzmann constant and T is the temperature), the
stationary solution is given by Boltzmann equilibrium

pst (x) = Ne
− U (x)

kB T , (20)

with some normalization constant N . In the non-Markovian
case we expect essential modifications of the governing
equations with the stationary solution different from standard
Boltzmann equilibrium.

III. GENERALIZED MASTER AND FRACTIONAL
DIFFUSION EQUATION

Now we derive corresponding generalized master and
fractional diffusion equations for the case involving the rates
(15) and (16). We use structured probability density function
ξ (x,t,τ ) with the residence time τ as an auxiliary variable. This
density gives the probability that the particle position X(t) at
time t is at the point x and its residence time Tx at point x

is in the interval (τ,τ + dτ ). The density ξ (x,t,τ ) obeys the
balance equation

∂ξ

∂t
+ ∂ξ

∂τ
= −[T+

x (x,τ ) + T−
x (x,τ )]ξ. (21)

We consider only the case when the residence time of random
walker at t = 0 is equal to zero, so the initial condition is

ξ (x,0,τ ) = p0(x)δ(τ ), (22)

where p0(x) is the initial density. The boundary condition
in terms of residence time variable (τ = 0) can be written

as [37]

ξ (x,t,0) =
∫ t

0
T+

x (x − a,τ )ξ (x − a,t,τ )dτ

+
∫ t

0
T−

x (x + a,τ )ξ (x + a,t,τ )dτ. (23)

We solve Eq. (21) by the method of characteristics for τ < t :

ξ (x,t,τ ) = ξ (x,t − τ,0)e− ∫ τ

0 λ(τ )dτ−νa|F (x)|τ . (24)

The structural density ξ can be rewritten in terms of the survival
function Eq. (9) and the integral arrival rate

j (x,t) = ξ (x,t,0)

as

ξ (x,t,τ ) = j (x,t − τ )�λ(x,τ )e−νa|F (x)|τ , τ < t. (25)

Our purpose now is to derive the master equation for the
probability density

p(x,t) =
∫ t+

0
ξ (x,t,τ )dτ. (26)

Let us introduce the integral escape rate to the right i+(x,t)
and the integral escape rate to the left i−(x,t) as

i±(x,t) = w±(x)
∫ t+

0
λ(τ )ξ (x,t,τ )dτ. (27)

We should note that the integration with respect to the
residence time τ in Eqs. (26) and (27) involves the upper limit
τ = t, where we have a singularity due to the initial condition
(22). Then the boundary conditions (23) can be written in a
simple form:

j (x,t) = i+(x − a,t) + i−(x + a,t)

+
{
νaF (x − a)p(x − a,t), F � 0,

−νaF (x + a)p(x + a,t), F < 0.
(28)

It follows from Eqs. (22), (25), and (27) that

i±(x,t) =
∫ t

0
ψ±(x,τ )j (x,t − τ )e−νa|F (x)|τ dτ

+ψ±(x,t)p0(x)e−νa|F (x)|t , (29)

where

ψ±(x,τ ) = w±(x)ψλ(τ ) = w±(x)λ(τ )�λ(τ ). (30)

Substitution of Eqs. (22) and (25) to Eq. (26), gives

p(x,t) =
∫ t

0
�λ(τ )j (x,t − τ )e−νa|F (x)|τ dτ

+�λ(t)p0(x)e−νa|F (x)|t . (31)

The balance equation for probability density p(x,t) can be
written as

∂p

∂t
= −i+(x,t) − i−(x,t) + j (x,t) − νa|F (x)|p. (32)

Let us find a closed equation for p(x,t) by finding the
formulas for the integral rates i±(x,t) and j (x,t) in terms
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of density p(x,t). We apply the Laplace transform f̂ (s) =∫ ∞
0 f (τ )e−sτ dτ to Eqs. (29) and (31), and obtain

ı̂±(x,s) = ψ̂±(x,s + νa|F (x)|)[ĵ (x,s) + p0(x)]

and

p̂(x,s) = �̂λ(s + νa|F (x)|)[ĵ (x,s) + p0(x)].

From these two equations we find

ı̂±(x,s) = ψ̂±(x,s + νa|F (x)|)
�̂λ(s + νa|F (x)|) p̂(x,s). (33)

Applying the inverse Laplace transform and using the shift
theorem we obtain

i±(x,t) =
∫ t

0
K±(x,t − τ )e−νa|F (x)|(t−τ )p(x,τ )dτ,

where K+(x,t) and K−(x,t) are the memory kernels defined
by Laplace transforms

K̂±(x,s) = ψ̂±(x,s)

�̂λ(s)
. (34)

A. Generalized fractional diffusion equation

Now we derive the generalized fractional diffusion equation
for subdiffusion that is for λ(τ ) given by Eq. (8). For simplicity
we consider

w+ = w− = 1/2. (35)

It is straightforward to generalize to non-homogeneous
systems by considering space dependent λ(x,τ ) and space
dependent anomalous exponent μ(x), this case we consider
elsewhere [38,39]. The waiting time probability density
functions Eq. (30) are

ψ±(τ ) = 1

2
ψλ(τ ) = 1

2

μτ
μ

0

(τ0 + τ )1+μ
. (36)

The Laplace transform of the waiting time densities (36) can
be found from ψλ(τ ) Eq. (11) using the Tauberian theorem

ψ̂λ(s) 	 1 − gsμ, s → 0

with

g = �(1 − μ)τμ

0 . (37)

From Eq. (34) we obtain the Laplace transforms

K̂±(s) 	 s1−μ

2g
, s → 0. (38)

Therefore, the integral escape rates to the right i+(x,t) and to
the left i−(t) in the subdiffusive case are

i± = e−νa|F (x)|tD1−μ
t [p(x,t)eνa|F (x)|t ]/(2g). (39)

By introducing the total integral escape rate

i(x,t) = i+(x,t) + i−(x,t), (40)

and expanding the right-hand side of Eq. (32) to second order
in jump size a we obtain the following fractional equation:

∂p

∂t
= −a2ν

∂

∂x
[F (x)p(x,t)] + a2

2

∂2i

∂x2
, (41)

which using Eq. (39) leads to the main equation of the paper—
the generalized fractional diffusion equation:

∂p

∂t
= ∂2

∂x2

[
Dμe−νa|F (x)|tD1−μ

t [p(x,t)eνa|F (x)|t ]
]

− a2ν
∂

∂x
[F (x)p(x,t)] . (42)

We should note that Eq. (42) does not involve the stan-
dard subdiffusive limit a → 0,τ0 → 0 such that Dμ = a2/

[2�(1 − μ)τμ

0 ] remains constant. This fractional equation
describes the transition from an intermediate subdiffusion to an
asymptotically normal advection-diffusion transport. Within
the time scale T1 for which τ0/T1 � 1 and νa|F |T1 � 1 we
have the intermediate subdiffusive regime, while for T2 with
νa|F |T2 � 1 we obtain normal diffusion. This implies that
νa|F |τ0 � 1. Numerical simulations (see below) confirms
that Eq. (11) is a good approximation for the master equation.

Equation (42) is fundamentally different from the classical
FFPE (5) because it involves the external force in both terms on
the right-hand side. One can see that the force F (x) not only
determines the advection term as in Eq. (5), but also plays
the role of tempering parameter through the factor eνa|F (x)|t .
Similar factor occurs in subdiffusive equation with the death
or evanescent process [40,41]. However, here we consider the
system with constant total number of particle.

B. Constant force

First we consider linear potential which results in a constant
force. We assume F > 0. The generalized fractional diffusion
equation Eq. (42) in this case simplifies to

∂p

∂t
= e−νaF t ∂2

∂x2

[
DμD1−μ

t [p(x,t)eνaF t ]
]

− a2νF
∂

∂x
[p(x,t)]. (43)

Applying simultaneously Laplace and Fourier transforms
L{f (t)} = f̂ (s) = ∫ ∞

0 f (τ )e−sτ dτ , F{f (x)} = f̃ (k) =∫ ∞
−∞ f (x)e−ikxdx, and using the Laplace transform of the

fractional derivativeL{D1−μ
t f (t)} = s1−μf̂ (s) for 0 < μ < 1,

the solution of this equation reads

ˆ̃p(k,s) = 1

s + k2Dμ(s + νaF )1−μ + ikFa2ν
. (44)

Here we use the initial condition p(x,0) = δ(x), which has
the Fourier transform p̃(k) = 1. Taking the limit s → 0 and
k → 0 which corresponds to the long time and large distance
limit, we get

ˆ̃p(k,s) = 1

s + k2Dμ(νaF )1−μ + ikFa2ν
. (45)

The inverse Fourier-Laplace transform of Eq. (45) is the
solution of the diffusion-advection equation

∂p

∂t
= DF

∂2

∂x2
p(x,t) − v

∂

∂x
p(x,t). (46)

Of course, the solution of this equation is a celebrated Gaussian
density with the diffusion coefficient and advection velocity
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given by

DF = Dμ(νaF )1−μ, v = νFa2. (47)

However, note that in our case the long-time limit is drastically
different from the standard Fokker-Planck equation because
both advection and diffusion coefficients depend on the
external force. This is another example how anomalous effects
are hiding behind the seemingly normal behavior.

Transition from subdiffusive density at short times to
Gaussian density in the long-time limit occurs since the
external force acts as a tempering factor which introduces a
cut-off to the power-law waiting time distribution. However
the difference of our generalized fractional equation from
known fractional Fokker-Planck equation is that in our case
the tempering is more complex [see Eq. (14)]. It has two terms
and depends on the external force. Numerical results of Sec. IV
confirms our theoretical predictions.

C. Stationary solution in a confining potential

In a confining potential the system attains equilibrium. To
derive the equation for the stationary solution we write the
escape rate i(x,t) in Laplace form

î(x,s) = (s + νa|F (x)|)1−μ

g
p̂(x,s), (48)

take the limit s → 0 corresponding to t → ∞, and obtain the
stationary escape rate

ist (x) = (νa|F (x)|)1−μ

g
pst (x), (49)

where the stationary density is defined in a standard
way pst (x) = lims→0 sp̂(x,s). Taking the time derivative in
Eq. (41) to zero and substituting Eq. (49) we obtain the
stationary advection-diffusion equation

−a2ν
d

dx
[F (x)pst (x)] + d2

dx2
[DF (x)pst (x)] = 0, (50)

where the effective diffusion coefficient is

DF (x) = Dμ(νa|F (x)|)1−μ. (51)

Integrating Eq. (50) and taking into account that the flux of the
particles is zero we obtain

−a2νF (x)pst (x) + d

dx
[DF (x)pst (x)] = 0. (52)

An interesting property of Eq. (51) is that the effective
diffusion coefficient DF (x) depends on the external force and
anomalous exponent. This fact implies that the Boltzmann
distribution is no longer a stationary solution of Eq. (52). For
the quadratic potential U (x) = κx2/2 with F (x) = −κx, we
find that for large x the stationary density pst (x) has the form

pst (x) ∼ exp(−A|x|1+μ), (53)

where A > 0 is a constant (details are given in the next section).
One can see that the form of stationary density is determined
by the anomalous exponent μ. In this case the particles spread
further compared to the Boltzmann case. The reason is the
dependence of the effective diffusion constant DF (x) on force
F (x). Note that for the subdiffusive fractional Fokker-Planck

equation (5) the anomalous exponent only determines the slow
power law relaxation rate, while the stationary density con-
verges to Boltzmann equilibrium which does not depend on μ.

IV. NUMERICAL RESULTS

We consider two particular cases: (1) constant force F

corresponding to the linear potential and (2) the quadratic
potential U (x) = κx2/2 both in the infinite domain. We
concentrate on the behavior of the density function p(x,t), the
mean 〈x(t)〉 and the variance σ (t) = 〈x2〉 − 〈x〉2 calculated
using an ensemble of trajectories from the initial distri-
bution p(x,0) = δ(x). We also calculate the time averaged
variance of a single trajectory of length T , σT (�,T ) =
δ2(�,T ) − [δ(�,T )]2, where δn(�,T ) = ∫ T −�

0 [x(t + �) −
x(t)]ndt/(T − �), n = 1,2. This quantity become a standard
tool to assess ergodic properties of a system been equivalent
to its ensemble averaged counterpart only for ergodic case.

When the external force F is constant, we observe the
transition from subdiffusion at short times to seemingly normal
diffusion at long times (see Sec. III B). The density function
changes from the distinct subdiffusive shape for short times
to the Gaussian propagator at longer times. This transition is
confirmed numerically and shown in the inset of Fig. 1. The
ensemble averaged variance σ (t) grows as a power-law for
short times, σ (t) ∼ tη, and transition to a normal diffusive
linear growth σ (t) ∼ 2DF t for longer times. However, in this
case the diffusion coefficient DF given by Eq. (47) depends
on the force F and anomalous exponent μ. We conclude that
although the variance σ (t) is linearly proportional to time,

100 102 104 106
t

100

102

104

σ(
 )

-40 0 40 80
x

10-4

10-2

100

p(
x,
t)

F

t

FIG. 1. (Color online) Variance σ (t) = 〈x2〉 − 〈x〉2 of ensemble
calculated with μ = 0.3 and p(x,0) = δ(x). In all simulations we use
ν = 1, a = 0.1, and τ0 = 1. For F = 0 (lowest curve) the variance
grows as Dμtμ (dashed-dotted line) in the limit t → ∞. Constant
force F = 0.0001, F = 0.001, and F = 0.01 (curves from bottom to
top on the RHS of the figure) leads to the transition from subdiffusive
behavior for short times to normal diffusion in the long time limit,
σ → 2DF t (dashed lines), with DF given by Eq. (47). Intermediate
asymptotic of the variance is fitted by the power-law (dashed-dotted
lines, see the text). The inset shows transition of densities from
subdiffusive form for short times to the Gaussian shape for long times
caused by the constant force F = 0.0001. Densities were calculated
at t = 103, 104, 5 × 104, and 105.
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this dependence reveals the anomalous nature of the process
even in the limit t → ∞. Numerical calculations confirms
the analytical result for the diffusion coefficient Eq. (47) (see
Fig. 1). Second observation is that the power-law behavior at
short times involves the exponent η(F ) > μ which depends
on force F . For μ = 0.3 they are estimated to be η ≈ 0.39
for F = 0.0001, η ≈ 0.47 for F = 0.001, and η ≈ 0.6 for
F = 0.01. This can be interpreted as an enhancement of
subdiffusion coursed by the constant force. Such enhancement
should be taken into account in the analysis of biological
experiments where subdiffusion usually appears as transient
before the transition to the normal diffusion [10]. For the large
value of F the exponent η tends to one while in the small
force limit η → μ. The time averaged variance calculated
for constant force grows linearly σT (�,T ) ∼ � (see Fig. 2).
After averaging over different trajectories, it grows with the
coefficient 2DF which is equal to the ensemble average value.
This shows that the non-ergodic subdiffusive system (without
no force) becomes ergodic one under the action of the constant
external force.
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FIG. 2. (Color online) Main figure: The action of the constant
force F = 0.001. Time-averaged variance σT (�,T ) calculated for
30 individual trajectories each of a length T = 3 × 104 (each curve
corresponds to a single trajectory) with μ = 0.7. Bold solid curve
(red) represents the average over 30 trajectories. The time averaged
variance is proportional to the time lag σT (�,T ) ∼ � as indicated
by dashed-dotted line. The dashed (blue) line represents the long
time asymptotic of the ensemble averaged variance and is given
by 2DF t with DF defined by Eq. (47) (see the text). The equality
between the time and the ensemble averaged variance reflects the
ergodic behavior of the system under the action of constant external
force. Inset: Contrast this with the behavior in the quadratic potential
U (x) = κx2/2 with κ = 0.001. Each individual curve corresponds
to the time averaged variance of a single trajectory with μ = 0.7.
The bold solid (red) line represents average over 30 trajectories.
The dashed (black) curve is the numerically calculated ensemble
averaged variance. For small t the variance has power-law behavior
σ (t) ∼ tμ and in the long time limit it saturates due to the confined
space. The time averaged variance is proportional to the time lag
σT (�,T ) ∼ � (as indicated by dashed-dotted line) before it also
saturates to a different than the ensemble averaged variance value.
This indicates that the behavior of the system in the quadratic potential
is non-ergodic.
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FIG. 3. (Color online) Density p(x,t) in the quadratic potential
U (x) = kx2, k = 0.001 calculated with the anomalous exponent
μ = 0.5 at time t = 105 and t = 106. Two densities overlap indicating
convergence to stationary solution pst . Clearly pst is non-Boltzmann
and is well described (accept for the central part) by the long-wave
asymptotic Eq. (52) shown by the dashed line. To distinguish the form
of the stationary solution exp(−A|x|1+μ), we show the Boltzmann
equilibrium exp(−Bx2) and the function exp(−C|x|) (dashed-dotted
curves) to guide the eye (A,B,C are positive constants). Note that the
central part of pst has distinct cusp at x = 0 where the force vanishes.

Now we consider the quadratic potential U (x) = κx2/2.

Again we calculate the time averaged variance and compare it
with the ensemble averaged variance (inset of Fig. 2). For small
t the ensemble averaged variance has the power-law behavior
σ (t) ∼ tμ and in the long-time limit it saturates due to the
confined space. The time averaged variance is proportional to
the time lag σT (�,T ) ∼ � before it also saturates to a different
than the ensemble averaged variance value. This indicates that
the behavior of the system in the quadratic potential becomes
again non-ergodic despite the tempering affect of the force.
The reason for this is that the tempering effect of the external
force in our case is more complex than standard tempering
and depends on force [see Eq. (14)]. Opposite to the constant
force, in quadratic potential the tempering effect of the force
becomes position dependent. This complex behavior is also
reflected in the shape of the stationary density which is not
given by Boltzmann density. Numerical simulations of the
stationary density are in good agreement with analytical result
Eq. (53) (see Fig. 3).

V. CONCLUSIONS

We have presented a model of anomalous subdiffusive
transport in which the force acts on the particle at all times
not only at the moment of jump. This leads to the dependence
of jumping rate on the force with the dramatic change of
particles behavior compared to the standard CTRW model.
We have derived a new type of fractional diffusion equation
which is fundamentally different from the classical fractional
Fokker-Planck equation. In our model the force F (x) not only
appears in the drift term as in Eq. (5), but also determines
the structure of the diffusion term controlling the spread of
particles. The constant external force leads to the natural
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tempering of the broad waiting time distribution and, as a
result, to the transition to a seemingly normal diffusion (linear
growth of the mean squared displacement) and equivalence
of the time and ensemble averages. However, this may lead
to a wrong conclusion in analyses of experimental results on
transient subdiffusion [10] that the process is normal for large
times. We have found that contrary to normal diffusion process
in the external force field, the diffusion coefficient depends
on the force and anomalous exponent. This fact implies that
the Boltzmann distribution is no longer stationary solution.
External perturbations and noise fluctuations are not separable
which reflects the non-Markovian nature of the process even
for large times.

Our results would be possible to test in experiments, for ex-
ample, by considering a bead which is moving subdiffusively
in an actin network. The motion of such a bead is very well
described by a continuous time random walk type of dynamics

with power law waiting time distribution caused by trapping
of the bead inside network “cages” [42]. Force-measurements
could be realized by using optical trap and tweezers which are
the nano-tools capable of performing such measurements on
individual molecules and organelles within the living cell [14]
or by applying an external electromagnetic force and using
magnetic bead. When the force is constant the dependence
of the measures diffusion coefficient on the strength of the
force would reveal the predicted power-law behavior F 1−μ.
For quadratic potential it could be possible to retrieve the form
of the stationary profile (53) with the slow decay compared to
Boltzmann distribution for large x.

ACKNOWLEDGMENT

S.F. and N.K. acknowledge the support of the EPSRC Grant
No. EP/J019526/1 “Anomalous reaction-transport equations”.

[1] Anomalous Transport: Foundations and Applications, edited
by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH,
Weinheim, 2007).

[2] G. Drazer and D. H. Zanette, Phys. Rev. E 60, 5858 (1999).
[3] E. R. Weeks and D. A. Weitz, Chem. Phys. 284, 361

(2002).
[4] G. Seisenberger, M. U. Ried, T. Endreß, H. Büning, M. Hallek,
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