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Persistent random walk of cells involving anomalous effects and random death
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The purpose of this paper is to implement a random death process into a persistent random walk model which
produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell
motility for which the switching rate depends upon the time which the cell has spent moving in one direction.
It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads
to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell
motility: the longer the cell moves in one direction, the smaller the switching probability to another direction
becomes. We derive master equations for the cell densities with the generalized switching terms involving the
tempered fractional material derivatives. We show that the random death of cells has an important implication for
the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary
master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the
role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles
corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte
Carlo simulations confirm these bounds.
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I. INTRODUCTION

Cell motility is an important factor in embryonic morpho-
genesis, wound healing, cancer proliferation, and many other
physiological and pathological processes [1]. The microscopic
theory of cell migration is based on various random-walk
models [2]. Most theoretical studies of cell motility deal with
Markovian random walks [3–5]. However, the experimental
analysis of the trajectories of cells shows that they might
exhibit non-Markovian superdiffusive dynamics [6–8]. It has
been found recently that cancer cell motility is superdiffu-
sive [9,10].

Several techniques are available to obtain a superdiffusion,
including the continuous-time random walk (CTRW) [11–
13], generalization of the Markovian persistent random walk
[14–16], stochastic differential equations [17], a fractional
Klein-Kramers equation [7,18], and the non-Markovian
switching model [19]. The CTRW model [11–13] for superdif-
fusion involves the joint probability density function (PDF)
�(τ,r) for a waiting time τ and a displacement (jump) r .
One has to assume that the waiting time and displacement
are correlated. For example, �(τ,r) = δ(τ − |r|/v)w(r) with
w(r) ∼ |r|−μ (2 < μ < 3) as r → ∞ corresponds to the
Lévy walk for which the particle moves with a constant
speed v, and the waiting time τ depends on the displacement.
The mean-squared displacement (MSD) for the Lévy walk
is EX2(t) ∼ t4−μ (superdiffusion). Another way to obtain a
superdiffusive behavior is a two-state model with power-law
sojourn time densities as the generalization of correlated
random walk involving two velocities [14–16]. One can also
start with the stochastic differential equation for the position
of particle X(t) : Ẋ(t) = v(t), where the velocity v(t) is
a dichotomous stationary random process with zero mean
which takes two values, V and −V [17]. One can obtain
a superdiffusive increase of the mean-squared displacement
in time by using a fractional Klein-Kramers equation for

the probability density function for the position and ve-
locity of cells [7,18]. This equation generates a power-law
velocity autocorrelation, Cv(t) ∼ Eμ[−( t

τ0
)μ], involving the

Mittag-Leffler function Eμ which explains the superdiffusive
behavior. In Ref. [19] the authors proposed a Markov model
with an ergodic two-component switching mechanism that
dynamically generates anomalous superdiffusion.

Cell invasion is a very complex process governed by
cell adhesion to the extracellular matrix (ECM) [20]. For
example, the transport of cancer cells involves receptor-
mediated adhesion of cells to the ECM, matrix degradation
by cancer-cell-secreted proteases, detachment from adhesion
sites, and invasion into intercellular space created by protease
degradation [21]. We do not intend to give a mathematical
model for this complex process. Our aim is to give a description
of this complicated cell transport in terms of a relatively simple
anomalous random walk. Cell motility is well described by a
persistent random walk for which the current direction of cells
is correlated with the direction of cell prior movement [22].
The hyperbolic model (two velocity-jump random walk) is a
widely accepted model for cell transport. It is an extension of
the classical Keller-Segel model for chemosensitive movement
of cells. There is a rich literature on hyperbolic models (see,
for example, Refs. [23–26]).

In this paper we address the problem of the mesoscopic
description of transport of cells performing superdiffusion
with the random death process. One of the main challenges
is how to implement the death process into a non-Markovian
transport process governed by a persistent random walk with
power-law velocity autocovariance. We do not impose the
power-law velocity correlations at the very beginning. Rather,
this correlation function is dynamically generated by internal
switching involving the age-dependent switching rate. There
exist several approaches and techniques to deal with the
problem of persistent random walk with reactions [26–31].
However, these works are concerned only with a Markovian
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switching between two states. Our main objective here is to in-
corporate the death process into non-Markovian superdiffusive
transport equations, which is still an open problem. We show
that the random death of cells has an important implication for
the transport process through tempering of the superdiffusive
process.

II. PERSISTENT RANDOM-WALK MODEL INVOLVING
SUPERDIFFUSION

The basic setting of our model is as follows. The cell
moves on the right and left with the constant velocity v and
turns with the rate γ (τ ). The essential feature of our model
is that the switching rate γ (τ ) depends on the time which the
cell has spent moving in one direction [3]. We suggest that
the switching rate γ (τ ) is a decreasing function of residence
(running) time τ (negative aging). This rate describes the
anomalous persistence of cell motility: The longer the cell
moves in one direction, the smaller becomes the switching
probability to another direction. This assumption leads to the
power law for the velocity switching time distribution [see
the formula (9) in Sec. II A]. Thus we obtain a classical
Lévy walk with a superdiffusive behavior [14–16]. Keeping
in mind a superdiffusive movement of the cancer cells [9,10],
we consider the inhibition of cell proliferation by anticancer
therapeutic agents [32]. To describe this inhibition we consider
the random death process assuming that during a small time
interval (t,t + �t) each cell has a chance θ�t + o(�t) of
dying, where θ is the constant death rate. In what follows
we show that the governing equations for the cells densities
involve a nontrivial combination of transport and death kinetic
terms because of memory effects [26,33–36].

Let us define the mean density of cells, n+(x,t,τ ), at point
x and time t that move in the right direction with constant
velocity v during time τ since the last switching. The mean
density n−(x,t,τ ) corresponds to the cell movement on the
left. The balance equations for both densities n+(x,t,τ ) and
n−(x,t,τ ) can be written as

∂n+
∂t

+ v
∂n+
∂x

+ ∂n+
∂τ

= −γ (τ )n+ − θn+, (1)

∂n−
∂t

− v
∂n−
∂x

+ ∂n−
∂τ

= −γ (τ )n− − θn−, (2)

where γ (τ ) is the switching rate and θ is the constant death
rate.

We assume that at the initial time t = 0 all cells just start
to move at zero residence (running) time

n±(x,0,τ ) = ρ0
±(x)δ(τ ), (3)

where ρ0
+(x) and ρ0

−(x) are the initial densities.
Our aim is to derive the master equations for the mean

density of cells moving right, ρ+(x,t), and the mean density
of cells moving left, ρ−(x,t), defined as

ρ±(x,t) =
∫ t+

0
n±(x,t,τ )dτ, (4)

where the upper limit of t+ is shorthand notation for
limε→0

∫ t+ε

0 . This limit emphasizes that singularity located at
τ = t is entirely captured by the integration with respect to the

residence variable τ . Since we assume the initial condition (3)
as in the most other paper in the field, at time t no residence
(running) time τ can exceed the value t , therefore it suffices to
integrate in (4) over the domain [0,t+]. Boundary conditions
at τ = 0 are

n±(x,t,0) =
∫ t+

0
γ (τ )n∓(x,t,τ )dτ. (5)

From the systems (1) and (2) together with (3) and (5) one can
obtain various non-Markovian models, including superdiffu-
sive fractional equations. It can be done by eliminating the
residence time variable τ as in (4) and introducing particular
models for the switching rate γ (τ ). The main advantage of the
above system is that it is a Markovian one. Here we follow
the idea that non-Markovian process can be studied in terms
of the Markovian one with supplementary age variable (see
pp. 252–271 in the classical book [37] ). This idea has been
used by van Kampen and Vlad [38]. Note that our model
involving a residence (running) time is similar to well-known
age-structured models in which the population density of
individuals depends explicitly on the age. Historically, such
a formulation with an additional age time was pioneered
by M’Kendrick in Ref. [39] (see Example 9 therein on pp.
121–122). In fact, we should make a clear distinction between
the residence time since the last velocity switching and the age
time of a particle from t = 0. The latter is not considered here.

A. Switching rate γ (τ )

One of the main purposes of this paper is to explore the
anomalous case when the switching rate γ (τ ) is inversely
proportional to the residence (running) time τ (negative aging).
This rate describes the anomalous persistence of a random
walk: The longer a cell moves in a particular direction without
switching, the smaller the probability of switching to another
direction becomes. Here we consider two cases involving the
Mittag-Leffler function and the Pareto distribution.

Case 1: We make use of the following switching rate [37]:

γ (τ ) = − �̇(τ )

�(τ )
(6)

with the survival probability [40]

�(τ ) = Eμ

[
−

(
τ

τ0

)μ]
, 0 < μ < 1, (7)

where τ0 is the time constant and Eμ[z] is the Mittag-Leffler
function.

Case 2: We employ the explicit expression for the switching
rate as [15,36]

γ (τ ) = μ

τ0 + τ
, 0 < μ < 2. (8)

This assumption together with (6) leads to a survival function
�(τ ) that has a power-law dependence (Pareto distribution),

�(τ ) =
[

τ0

τ0 + τ

]μ

. (9)

Our next step is to obtain the non-Markovian equations for
ρ+(x,t) and ρ−(x,t) by eliminating the residence (running)
time variable τ [see (4)].
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III. NON-MARKOVIAN MASTER EQUATIONS FOR ρ+(x,t)
AND ρ−(x,t)

The aim now is to find equations for ρ+(x,t) and ρ−(x,t)
by solving the partial differential equations (1) and (2)
together with the boundary condition (5) at τ = 0 and initial
condition (3) at t = 0. By using the method of characteristics
we find for τ < t

n±(x,t,τ ) = n±(x ∓ vτ,t − τ,0)e− ∫ τ

0 γ (u)due−θτ . (10)

It is convenient to use the survival function from (6)

�(τ ) = e− ∫ τ

0 γ (u)du (11)

and the fluxes between two states (switching terms) i+(x,t)
and i−(x,t):

i±(x,t) =
∫ t+

0
γ (τ )n±(x,t,τ )dτ. (12)

We notice that n+(x,t,0) = i−(x,t) and n−(x,t,0) = i+(x,t),
so the formula (10) can be rewritten as

n±(x,t,τ ) = i∓(x ∓ vτ,t − τ )�(τ )e−θτ . (13)

This formula has a very simple meaning. For example, the
density n+(x,t,τ ) gives the number of cells at point x and
time t moving in the right direction during time τ as a result
of the following process. The first factor in the right-hand
side of (13), i−(x − vτ,t − τ ), gives the number of cells that
switch their velocity from −v to v at the point x − vτ at the
time t − τ and survive during movement time τ due to random
switching described by �(τ ) and the death process described
by e−θτ .

The balance equations for the unstructured density

ρ±(x,t) = ∫ t+

0 n+(x,t,τ )dτ can be found by differentiating (4)
together with (13) with respect to time t or by using the
Fourier-Laplace transform technique [see Appendix A, part
(ii)]. We obtain

∂ρ+
∂t

+ v
∂ρ+
∂x

= −i+(x,t) + i−(x,t) − θρ+, (14)

∂ρ−
∂t

− v
∂ρ−
∂x

= i+(x,t) − i−(x,t) − θρ−. (15)

These two equations have a similar structure to the standard
model for a persistent random walk with reactions [26–30],
but the switching terms i+(x,t) and i−(x,t) essentially differ
from the simple Markovian terms γρ+ and γρ−. They are

i+(x,t) =
∫ t

0
K(t − τ )ρ+(x − v(t − τ ),τ )e−θ(t−τ )dτ, (16)

i−(x,t) =
∫ t

0
K(t − τ )ρ−(x + v(t − τ ),τ )e−θ(t−τ )dτ. (17)

Here K(τ ) is the memory kernel determined by its Laplace
transform [41],

K̂(s) = ψ̂(s)

�̂(s)
, (18)

where ψ̂(s) and �̂(s) are the Laplace transforms of the
residence time density ψ(τ ) = −d�/dτ and the survival
function �(τ ). One can see that i+(x,t) and i−(x,t) depend

on the death rate θ and transport process involving velocity
v. This is a non-Markovian effect. Note that the similar
switching terms with the memory kernel K(τ ) have been
obtained in Refs. [42–45]. To find (16) and (17), we use the
Fourier-Laplace transform

ı̃±(k,s) =
∫
R

∫ ∞

0
i±(x,t)eikx−st dtdx, (19)

ρ̃±(k,s) =
∫
R

∫ ∞

0
ρ±(x,t)eikx−st dtdx. (20)

We find [see Appendix A, part (i)]

ı̃±(k,s) = ψ̂(s ∓ ikv + θ )

�̂(s ∓ ikv + θ )
ρ̃±(k,s). (21)

The inverse Fourier-Laplace transform gives the explicit
expressions for the switching terms i+(x,t) and i−(x,t) in
terms of the unstructured densities ρ+(x,t) and ρ−(x,t).

If we introduce the notations

�̂±
θ = �̂(s ± ikv + θ ), ψ̂±

θ = ψ̂(s ± ikv + θ ),

then the Fourier-Laplace transform of the total density
ρ(x,t) = ρ+(x,t) + ρ−(x,t) can be written as [see Ap-
pendix A, part (iii)]

ρ̃(k,s) = ρ0
+(k)[�̂−

θ + �̂+
θ ψ̂−

θ ] + ρ0
−(k)[�̂+

θ + �̂−
θ ψ̂+

θ ]

1 − ψ̂+
θ ψ̂−

θ

,

(22)
where ρ0

±(k) = ∫
R ρ0

±(x)eikxdx.

A. Markovian two-state model

If the switching rate γ (τ ) is constant, it corresponds to the
exponential survival function �(τ ) = e−γ τ for which K̂(s) =
γ and K(τ ) = γ δ(τ ). In this case (14) and (15) can be reduced
to a classical two-state Markovian model for the density of
cells moving right, ρ+(x,t), and the density of cells moving
left, ρ−(x,t):

∂ρ+
∂t

+ v
∂ρ+
∂x

= −γ (ρ+ − ρ−) − θρ+, (23)

∂ρ−
∂t

− v
∂ρ−
∂x

= γ (ρ+ − ρ−) − θρ−. (24)

When θ = 0, the model is well known as the persistent
random walk or correlated random walk which was analyzed
in Refs. [46,47]. The whole idea of this random-walk model
was to remedy the unphysical property of Brownian motion
of infinite propagation. Two equations (23) and (24) can
be rewritten as a telegraph equation for the total density
ρ(x,t) = ρ−(x,t) + ρ+(x,t). This model covers the ballistic
motion and the standard diffusive motion in the limit v → ∞
and γ → ∞ such that v2/γ remains constant. The Markovian
model has been studied thoroughly and all details can be found
in Refs. [26–30]. We should mention that relatively simple
extension of the two-state Markovian dynamical system (23)
and (24) is the non-Markovian model with the waiting time
PDF of the form

ψ(τ ) = β2τe−βτ .
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In this case, the Laplace transforms are

ψ̂(s) = β2

(β + s)2
, K̂(s) = sψ̂(s)

1 − ψ̂(s)
= β2

2β + s
.

The memory kernel in (16) and (17) has an exponential form

K(τ ) = β2e−2βτ .

Non-Markovian random motions of particles with velocities
alternating at Erlang-distributed and γ -distributed random
times have been considered in Refs. [48,49]. In this paper
we will focus on the anomalous case involving cells velocities
alternating at power-law-distributed random times [14–16].

B. Non-Markovian model involving anomalous switching

Let us consider two anomalous cases when the switching
rate γ (τ ) (6) is inversely proportional to the residence time τ .

Case 1: The Laplace transforms of the survival function
�(τ ) = Eμ[−( τ

τ0
)μ] and ψ(τ ) = −d�(τ )/dτ are

�̂(s) = τ
μ

0 sμ−1

1 + (sτ0)μ
, ψ̂(s) = 1

1 + (sτ0)μ
. (25)

The Laplace transform of the memory kernel K(τ ) is

K̂(s) = s1−μ

τ
μ

0

. (26)

Case 2: The survival function �(τ ) has a Pareto distribu-
tion (9) and the corresponding waiting time PDF ψ(τ ) is

ψ(τ ) = μτ
μ

0

(τ0 + τ )1+μ
. (27)

When 0 < μ < 1, the asymptotic approximation for the
Laplace transform ψ̂(s) can be found from the Tauberian
theorem [50],

ψ̂(s) � 1 − �(1 − μ)τ0
μsμ, s → 0. (28)

The Laplace transform of memory kernel K(τ ) can be written
approximately as

K̂(s) � s1−μ

�(1 − μ)τμ

0

. (29)

Note that the only difference between (26) (case 1) and (29)
(case 2) is the �(1 − μ) in the denominator in (29). It should
be also noted that the formula (29) for the Laplace transform of
the memory kernel K corresponds just to a small-s asymptotics
in the Laplace space. At large but finite times the difference
can be substantial, especially for μ close to 1 [51], and this
can be very important for numerical simulations [52].

C. Tempered fractional material derivatives

In the anomalous case the switching terms (16) and (17) can
be written in terms of tempered fractional material derivatives.
Using (21) and (26) we write the Fourier-Laplace transforms
of i+(x,t) and i−(x,t) as

ı̃±(k,s) = τ
−μ

0 (s ∓ ikv + θ )1−μρ̃±(k,s). (30)

For 0 < μ < 1, we define the tempered fractional material
derivatives ( ∂

∂t
± v ∂

∂x
+ θ )1−μ of order 1 − μ by their Fourier-

Laplace transforms,

LF
{(

∂

∂t
± v

∂

∂x
+ θ

)1−μ

ρ

}
= (s ± ikv + θ )1−μρ̃. (31)

Note that fractional material derivatives with the factor
(s ± ik)1−μ have been introduced in Ref. [16]. Evolution
equations for anomalous diffusion involving coupled space-
time fractional derivative operators involving the Fourier-
Laplace symbols like (s + ik)β, (s + k2)β, etc., have been
considered in Refs. [53–55]. Here we have the tempered
fractional derivative operator (31) that involves both the
advective transport and the death rate θ. The latter plays the
role of tempering parameter because (s ± ikv + θ )1−μ has
a finite limit θ1−μ as s → 0 and k → 0. We represent the
anomalous switching terms as

i±(x,t) = τ
−μ

0

(
∂

∂t
∓ v

∂

∂x
+ θ

)1−μ

ρ±, 0 < μ < 1.

The master equations (14) and (15) can be rewritten as

∂ρ+
∂t

+ v
∂ρ+
∂x

= −τ
−μ

0

(
∂

∂t
− v

∂

∂x
+ θ

)1−μ

ρ+

+ τ
−μ

0

(
∂

∂t
+ v

∂

∂x
+ θ

)1−μ

ρ− − θρ+, (32)

∂ρ−
∂t

− v
∂ρ−
∂x

= −τ
−μ

0

(
∂

∂t
+ v

∂

∂x
+ θ

)1−μ

ρ−

+ τ
−μ

0

(
∂

∂t
− v

∂

∂x
+ θ

)1−μ

ρ+ − θρ−. (33)

Note that when θ = 0 these equations describe a very strong
persistence in a particular direction. For the symmetrical initial
conditions

ρ0
+(x) = 1

2δ(x), ρ0
−(x) = 1

2δ(x),

for which E{x(t)} = 0, the mean-squared displacement
E{x2(t)} exhibits ballistic behavior [14–16]:

E{x2(t)} � t2

as t → ∞. However, if all cells at t = 0 start to move to the
right with the velocity v from the point x = 0 :

ρ0
+(x) = δ(x), ρ0

−(x) = 0,

then (see Appendix B) the first moment E{x(t)} is

E{x(t)} � vτ
μ

0

2
t1−μ.

The sub-ballistic behavior ofE{x(t)} was obtained in Ref. [18]
for the fractional Kramers equation.

In the large-scale limit k → 0, we expand (s + θ +
ikv)1−μ = (s + θ )1−μ + ikv(1 − μ)(s + θ )−μ + o(k) and ob-
tain from (30)

ı̃+(k,s) = τ
−μ

0 [(s + θ )1−μ − ikv(1 − μ)(s + θ )−μ]ρ̃+,

ı̃−(k,s) = τ
−μ

0 [(s + θ )1−μ + ikv(1 − μ)(s + θ )−μ]ρ̃−.
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By using the inverse Fourier-Laplace transform we find

i+(x,t) = e−θt ∂

∂t

∫ t

0
mμ(t − τ )ρ+(x,τ )eθτ dτ

− (1 − μ)e−θt v

∫ t

0
mμ(t − τ )

∂ρ+(x,τ )

∂x
eθτ dτ,

i−(x,t) = e−θt ∂

∂t

∫ t

0
mμ(t − τ )ρ−(x,τ )eθτ dτ

+ (1 − μ)e−θt v

∫ t

0
mμ(t − τ )

∂ρ−(x,τ )

∂x
eθτ dτ,

where mμ(t) is the classical renewal measure density associ-
ated with the survival probability (7),

mμ(t) = tμ−1

�(μ)τμ

0

, 0 < μ < 1. (34)

The density mμ(t) has a meaning of the average number of
jumps per unit time. Note that the switching terms i+(x,t)
and i−(x,t) involve the advection term with memory effects.
This coupling of advection with switching rate is a pure
non-Markovian effect. Expressions for i+(x,t) and i−(x,t)
can be rewritten with the standard notations involving the
Riemann-Liouville fractional derivative D1−μ

t of order 1 − μ

and fractional integral I
μ
t of order μ

i+(x,t) = e−θtD1−μ
t [ρ+(x,t)eθt ]

− (1 − μ)e−θt vI
μ
t

[
∂ρ+(x,t)

∂x
eθt

]
, (35)

i+(x,t) = e−θtD1−μ
t [ρ−(x,t)eθt ]

+ (1 − μ)e−θt vI
μ
t

[
∂ρ−(x,t)

∂x
eθt

]
. (36)

It is easy to generalize the master equations (32) and (33)
for the situation when the cells’ motility involves random
Brownian motion with the diffusion coefficient D. We can
write

∂ρ+
∂t

+ v
∂ρ+
∂x

= D
∂2ρ+
∂x2

− τ
−μ

0 (D−
θ ρ+ − D+

θ ρ−) − θρ+,

∂ρ−
∂t

− v
∂ρ−
∂x

= D
∂2ρ−
∂x2

− τ
−μ

0 (D+
θ ρ− − D−

θ ρ+) − θρ−,

where the tempered fractional derivatives D±
θ ρ are defined by

LF{D±
θ ρ} = (s ± ikv + θ − Dk2)1−μρ̃.

D. Tempered superdiffusion

Now let us find the switching terms (16) and (17) in the case
when the first moment < T >= ∫ ∞

0 τψ(τ )τ is finite, while the
variance is divergent 1 < μ < 2. When the death rate θ = 0,

the mean-squared displacement E{x2(t)} exhibits sub-ballistic
superdiffusive behavior [14–16],

E{x2(t)} � t3−μ

(see Appendix C). In this case the small s expansion of ψ̂(s)
gives

ψ̂(s) � 1 − 〈T 〉s + A〈T 〉sμ, 1 < μ < 2. (37)

where 〈T 〉 = τ0 (μ − 1)−1 is the mean value of the random
running time, and A = �(2 − μ)τμ−1

0 . Then

K̂(s) = sψ̂(s)

1 − ψ̂(s)
� 1

〈T 〉 (1 + Asμ−1)

as s → 0. Using (21) and (26) we write the Fourier-Laplace
transforms of i+(x,t) and i−(x,t) as

ı̃±(k,s) = 1

〈T 〉 (1 + A(s + θ ∓ ikv)μ−1)ρ̃±(k,s). (38)

One can introduce the tempered fractional material derivatives
( ∂
∂t

± v ∂
∂x

+ θ )μ−1 of order μ − 1 for intermediate sub-
ballistic superdiffusive case 1 < μ < 2 as

LF
{(

∂

∂t
± v

∂

∂x
+ θ

)μ−1

ρ

}
= (s ± ikv + θ )μ−1ρ̃.

The switching terms can be written as

i±(x,t) = 1

〈T 〉
[

1 + A

(
∂

∂t
∓ v

∂

∂x
+ θ

)μ−1]
ρ±.

In the limit k → 0, we use the expansion (s + ikv +
θ )μ−1 = (s + θ )μ−1 + ikv(μ − 1)(s + θ )μ−2 + o(k) to obtain
from (38)

ı̃+(k,s) = 1

〈T 〉 [1 + A(s + θ )μ−1]ρ̃+

− 1

〈T 〉A(s + θ )μ−2ikv(μ − 1)ρ̃+,

ı̃−(k,s) = 1

〈T 〉 [1 + A(s + θ )μ−1]ρ̃−

+ 1

〈T 〉A(s + θ )μ−2ikv(μ − 1)ρ̃−.

By using the inverse Fourier-Laplace transform we find

i+(x,t) = ρ+(x,t)

〈T 〉 + e−θt ∂

∂t

∫ t

0
mA(t − τ )ρ+(x,τ )eθτ dτ

− v(μ − 1)e−θt

∫ t

0
mA(t − τ )

∂ρ+(x,τ )

∂x
eθτ dτ,

i−(x,t) = ρ−(x,t)

〈T 〉 + e−θt ∂

∂t

∫ t

0
mA(t − τ )ρ−(x,τ )eθτ dτ

+ v(μ − 1)e−θt

∫ t

0
mA(t − τ )

∂ρ−(x,τ )

∂x
eθτ dτ,

where

mA(t) = At1−μ

〈T 〉�(2 − μ)
, 1 < μ < 2. (39)

Switching terms i+(x,t) and i−(x,t) can be rewritten in terms
of the Riemann-Liouville fractional derivative Dμ−1

t of order
μ − 1 and fractional integral I

2−μ
t of order 2 − μ. Now we are

in a position to discuss the implications of tempering due to
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the random death process. In the next subsection we consider
the stationary case.

IV. STATIONARY PROFILE AND TRUNCATED LÉVY
FLIGHTS

The aim of this section is to analyze the cell density profiles
in the stationary case for the strong anomalous case 0 < μ < 1.
To ensure the existence of stationary profiles ρs

+(x) and ρs
−(x),

we introduce the constant source of cells at the point x = 0.
We keep in mind the problem of cancer cell proliferation.
One can think of the tumor consisting of the tumor core with
a high density of cells (proliferation zone) at x = 0 and the
outer invasive zone where the cell density is smaller. We are
interested in the stationary profile of cancer cells spreading in
the outer migrating zone [42]. For simplicity, we consider only
the one-dimensional case here. The generalization for two-
dimensional (2D) and 3D cases can be made in the standard
way [42].

Let us find a stationary solution to the system (32) and (33).
Now we show that in the long-time limit master equations
can be written in terms of exponentially truncated fractional
derivatives in which the ratio θ/v plays the role of tempering
to a Lévy jump distribution. The profiles ρs

+(x) and ρs
−(x) can

be found from

v
∂ρs

+(x)

∂x
= −is+(x) + is−(x) − θρs

+(x), (40)

−v
∂ρs

−(x)

∂x
= is+(x) − is−(x) − θρs

−(x), (41)

where is+(x) and is−(x) are the stationary switching terms with
the Fourier transforms:

ı̃s+(k) = [−ikv + θ )]1−μ

τ
μ

0

ρ̃s
+(k), (42)

ı̃s−(k) = [ikv + θ )]1−μ

τ
μ

0

ρ̃s
+(k). (43)

These formulas are obtain from (30) as s → 0 (t → ∞). Using
the shift theorem we can write is+(x) and is−(x) in terms of
exponentially truncated fractional derivatives [56],

is+(x) = v1−μe− θx
v

(
−∞D 1−μ

[
e

θx
v ρs

+(x)
])

τ
μ

0

, (44)

is−(x) = v1−μe
θx
v

(
D1−μ

∞
[
e− θx

v ρs
−(x)

])
τ

μ

0

. (45)

Here −∞D1−μ and D1−μ
∞ are the Weyl derivatives of order

1 − μ [57],

−∞D1−μρ(x) = 1

�(μ)

d

dx

∫ x

−∞

ρ(y)dy

(x − y)1−μ
, (46)

D1−μ
∞ ρ(x) = − 1

�(μ)

d

dx

∫ ∞

x

ρ(y)dy

(y − x)1−μ
(47)

with the Fourier transforms

F
{

−∞D1−μρ(x)
} = (−ik)1−μρ̂(k)

and

F
{
D1−μ

∞ ρ(x)
} = (ik)1−μρ̂(k).

We should note that our theory with death rate tempering
fundamentally differs from the standard tempering [56,58,59],
which is just the truncation of the power-law jump distribution
by an exponential factor involving a tempering parameter. In
fact, we do not introduce the Lévy jump distribution functions
at all. It means that we are not just employing a mathematical
trick to overcome long jumps with infinite variance which is a
standard problem of Lévy flights.

A. Upper and lower bounds for the stationary profiles

The purpose of this subsection is to find the upper bound,
ρu(x), and the lower bound, ρl(x), for the stationary profile
ρs(x) = ρs

+(x) + ρs
−(x) in the strong anomalous case μ < 1:

ρl(x) < ρs(x) < ρu(x).

If cells are released at the point x = 0 at the constant rate g on
the right and at the same rate g on the left, then the upper bound
can be easily found from the advection-reaction equation

v
∂ρu(x)

∂x
= −θρu(x).

Clearly, this equation describes the ballistic motion of cells
without switching. We obtain

ρu(x) = g

v
exp

[
− θ |x|

v

]
, (48)

where the prefactor g/v is found from the condition g =
θ

∫ ∞
0 ρu(x)dx [36].
We can find the lower bound ρl(x) using the small k

expansion

(θ ± ikv)1−μ = θ1−μ ± ikvθ−μ(1 − μ) + O(k2). (49)

From (42) and (43) we get

ı̃s+(k) = θ

(θτ0)μ
ρ̃s

+(k) − ikv(1 − μ)

(θτ0)μ
ρ̃s

+(k),

ı̃s−(k) = θ

(θτ0)μ
ρ̃s

−(k) + ikv(1 − μ)

(θτ0)μ
ρ̃s

−(k).

The inverse Fourier transform gives

is+(x) = θ

(θτ0)μ
ρs

+(x) − v(1 − μ)

(θτ0)μ
∂ρs

+(x)

∂x
, (50)

is−(x) = θ

(θτ0)μ
ρs

−(x) + v(1 − μ)

(θτ0)μ
∂ρs

−(x)

∂x
. (51)

Note that the stationary switching terms is+(x) and is−(x)
involve the advection terms proportional to the gradient of
density. This is a non-Markovian effect. Obviously, advection
terms are zero when μ = 1. Under the condition of a weak
death rate τ0θ 	 1, we obtain from (40) and (41) together
with (50) and (51) the following equation for ρs(x) = ρs

+(x) +
ρs

−(x):

D
∂2ρs(x)

∂x2
− θρs(x) = 0, (52)
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FIG. 1. (Color online) Monte Carlo profile involving N = 104

cells at time t = 103 (black line), stationary upper bound (48) (blue
top dot-dashed line), and lower bound (54) (red lower dot-dashed
line) profiles with parameters: the anomalous exponent μ = 0.2, the
death rate θ = 0.01, the time unit τ0 = 1, and the cell velocity v = 1.

where D is the effective diffusion coefficient

D = v2

θ
(1 − μ), μ < 1. (53)

Note that the diffusion coefficient D depends on the death rate
θ. The solution to (52) gives the lower bound

ρl(x) = g

v
√

(1 − μ)
exp

[
− θ |x|

v
√

(1 − μ)

]
. (54)

Monte Carlo simulations involving N = 1000 particles up to
time t = 103 confirm this bound. One can see from Fig. 1
that apart from the very long distance ∼103, the Monte Carlo
profile (black line) lies between the upper bound (48) (blue
top dot-dashed line) and the lower bound (54) (red lower dot-
dashed line). The green line represents the best fit.

V. DISCUSSION AND CONCLUSION

We have been motivated by experiments showing superdif-
fusive dynamics of cells [6–8]. In particular, it has been found
in Refs. [9,10] that the migration process for cancer cells is not
a simple Brownian motion but it is superdiffusive due to direc-
tional persistence in migration speed with long-memory effects
[60]. To characterize the 3D migration behavior of α5β1high
and α5β1low cancer cells, the MSD of individual cells has
been measured. A power-law relationship MSD = D(t/t0)μ

has been found with the anomalous exponent μ (a measure of
the persistence) varying from μ = 1 (Brownian motion) up to
μ = 2 (ballistically migrating cells). In particular, they found
that α5β1high cells migrate more persistently, as reflected by
their higher anomalous exponent μ value.

The main challenge of our paper was to implement the ran-
dom death process into a non-Markovian transport processes
governed by the anomalously persistent random walks. We
presented a Markovian model of cell motility that accounts for
the effects of a random death process and the dependence of
switching rates on the residence time variable τ . Our purpose
was to extend the standard model for the velocity-jump random

walk with reactions for the anomalous case of Lévy walks
involving intermediate sub-ballistic superdiffusive motion. We
derived non-Markovian master equations for the cell densities
with the generalized switching terms involving the tempered
fractional material derivatives. The cell degradation rate plays
the role of a tempering parameter. In the long-time limit we
derived stationary master equations in terms of exponentially
truncated fractional derivatives in which the rate of death
tempers a Lévy jump distribution. We find the upper and lower
bounds for the stationary profiles corresponding to the ballistic
transport and diffusion with the death-rate-dependent diffusion
coefficient. Monte Carlo simulations confirm these bounds.

The importance of our results for cancer cell motility
research can be explained as follows. In our paper we model
the inhibition of cell proliferation due to anticancer therapeutic
agents by the random death process with the constant rate
θ . We show that the death process leads to the transition
from an intermediate superdiffusive regime to asymptotically
normal diffusion transport regime. In another words, the death
process leads to not just the inhibition of cell proliferation
but also to the inhibition of cell transport (“death inhibited
transport”) by tempering the superdiffusive process. This
comes about from the nontrivial interaction between non-
Markovian superdiffusion and the random death process.

The main advantage of our model is that it can be extended
to the case of nonlinear death rate θ (ρ) that depends on the
total density of cells ρ. An important application of the results
of this paper may be the problem of wave propagation in
reaction-transport systems involving random walks with finite
jump speed and memory effects [61,62]. It would also be
interesting to explore the long-memory effects in the context
of persistent random walks with random velocities [13]. It
is also of great interest to analyze the nonlinear tempering
phenomenon leading to the nonlinear diffusion [63].
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APPENDIX A

The purposes of this Appendix are (i) to express the
switching functions i+(x,t) and i−(x,t) in terms of ρ+(x,t)
and ρ−(x,t); (ii) to derive the master equations for the
unstructured density ρ+(x,t), ρ−(x,t) (14) and (15); and (iii)
to find the Fourier-Laplace transform of the total density
ρ(x,t) = ρ+(x,t) + ρ−(x,t).

(i) Substitution of (13) into (4) and (12) together with the
initial condition (3) gives

i+(x,t) =
∫ t−

0
i−(x − vτ,t − τ )ψ(τ )e−θτ dτ

+ ρ0
+(x − vt)ψ(t)e−θt ,

i−(x,t) =
∫ t−

0
i+(x + vτ,t − τ )ψ(τ )e−θτ dτ

+ ρ0
−(x + vt)ψ(t)e−θt , (A1)
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and

ρ+(x,t) =
∫ t−

0
i−(x − vτ,t − τ )�(τ )e−θτ dτ

+ ρ0
+(x − vτ )�(t)e−θt ,

ρ−(x,t) =
∫ t−

0
i+(x + vτ,t − τ )�(τ )e−θτ dτ

+ ρ0
−(x + vτ )�(t)e−θt . (A2)

Applying the Fourier-Laplace transform together with shift
theorem to the above equations, we find expressions for i+(x,t)
and i−(x,t) in terms of ρ+(x,t) and ρ−(x,t). By using (19)
and (20), we obtain from (A1) and (A2)

ı̃±(k,s) = [ı̃∓(k,s) + ρ0
±(k)]ψ̂(s ∓ ikv + θ ), (A3)

ρ̃±(k,s) = [ı̃∓(k,s) + ρ0
±(k)]�̂(s ∓ ikv + θ ). (A4)

Therefore

ı̃±(k,s) = ψ̂(s ∓ ikv + θ )

�̂(s ∓ ikv + θ )
ρ̃±(k,s).

The inverse Fourier-Laplace transform gives (16).
(ii) It is convenient to introduce the following notations:

�̂±
θ = �̂(s ± ikv + θ ), ψ̂±

θ = ψ̂(s ± ikv + θ ),

then, solving (A3) and (A4) for ρ̃+ and ρ̃−, we find

ρ̃+(k,s) =
[
ψ̂+

θ ρ̃−(k,s)

�̂+
θ

+ ρ0
+(k)

]
�̂−

θ , (A5)

ρ̃−(k,s) =
[
ψ̂−

θ ρ̃+(k,s)

�̂−
θ

+ ρ0
−(k)

]
�̂+

θ . (A6)

These two equations can be rewritten as

ρ̃+(k,s)

�̂−
θ

− ρ0
+(k) = ψ̂+

θ ρ̃−(k,s)

�̂+
θ

,

ρ̃−(k,s)

�̂+
θ

− ρ0
−(k) = ψ̂−

θ ρ̃+(k,s)

�̂−
θ

.

Then

ρ̃+(k,s)

�̂−
θ

[1 − ψ̂−
θ ] − ρ0

+(k) = − ψ̂−
θ ρ̃+(k,s)

�̂−
θ

+ ψ̂+
θ ρ̃−(k,s)

�̂+
θ

,

ρ̃−(k,s)

�̂+
θ

[1 − ψ̂+
θ ] − ρ0

−(k) = − ψ̂+
θ ρ̃−(k,s)

�̂+
θ

+ ψ̂−
θ ρ̃+(k,s)

�̂−
θ

.

Since [1 − ψ̂±
θ ]/�̂±

θ = s ∓ ikv + θ , we obtain

(s + ikv + θ )ρ̃+(k,s) − ρ0
+(k) = − ψ̂−

θ ρ̃+(k,s)

�̂−
θ

+ ψ̂+
θ ρ̃−(k,s)

�̂+
θ

,

(s − ikv + θ )ρ̃−(k,s) − ρ0
−(k) = − ψ̂+

θ ρ̃−(k,s)

�̂+
θ

+ ψ̂−
θ ρ̃+(k,s)

�̂−
θ

.

The left-hand sides are the Fourier-Laplace transforms of
∂ρ±/∂t ± ∂ρ±/∂x − θρ+; therefore, these two equations are
the Fourier-Laplace transforms of the master equations (14)
and (15).

(iii) From (A5) and (A6) we find explicit expressions for
ρ̃+(k,s) and ρ̃−(k,s):

ρ̃+(k,s) = ρ0
+(k)�̂−

θ + ρ0
−(k)�̂−

θ ψ̂+
θ

1 − ψ̂+
θ ψ̂−

θ

, (A7)

ρ̃−(k,s) = ρ0
−(k)�̂+

θ + ρ0
+(k)�̂+

θ ψ̂−
θ

1 − ψ̂+
θ ψ̂−

θ

. (A8)

The Fourier-Laplace transform of the total density ρ(x,t) =
ρ+(x,t) + ρ−(x,t) is ρ̃+(k,s) + ρ̃−(k,s). Using (A7) and (A8),
we obtain (22).

APPENDIX B: ANOMALOUS SWITCHING μ < 1

In this Appendix we consider the case when the death rate
θ = 0 and all cells start at t = 0 to move on the right with the
velocity v from the point x = 0:

ρ0
+(x) = δ(x), ρ0

−(x) = 0.

Then ρ0
+(k) = 1 and ρ0

−(k) = 0. It follows from (22) that

ρ̃(k,s) = �̂(s − ikv) + �̂(s + ikv)ψ̂(s − ikv)

1 − ψ̂(s + ikv)ψ̂(s − ikv)
.

By using this formula, we can find the Laplace transforms of
the first moment E{x(t)} as

E{x(s)} = ∂ρ̃(k,s)

∂(ik)
|k=0.

When μ < 1 the first moment 〈T 〉 = ∫ ∞
0 τψ(τ )τ is divergent.

We obtain

E{x̂(s)} � v�(1 − μ)τμ

0

2s2−μ
.

The inverse Laplace transform gives

E{x(t)} � vτ
μ

0

2
t1−μ. (B1)

The same anomalous behavior of the first moment E{x(t)}
was obtained for the fractional Kramers equation [18] (see
also Appendix D).

APPENDIX C: ANOMALOUS SWITCHING 1 < μ < 2

In this Appendix we discuss the case when the death rate
θ = 0 and 1 < μ < 2. The purpose is to show that cell motility
exhibits sub-ballistic superdiffusive behavior. We consider
now the symmetrical initial conditions for which E{x(t)} = 0.
At t = 0 the cells start to move from the point x = 0 as follows:

ρ0
+(x) = 1

2δ(x), ρ0
−(x) = 1

2δ(x).
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Their Fourier transforms are equal: ρ0
+(k) = ρ0

−(k) = 1/2. Let
us find the mean-squared displacement E{x2(t)}. The formula
for ρ̃(k,s) is

ρ̃(k,s) = [1 + ψ̂(s + ikv)]�̂(s − ikv)

2[1 − ψ̂(s + ikv)ψ̂(s − ikv)]

+ [1 + ψ̂(s − ikv)]�̂(s + ikv)

2[1 − ψ̂(s + ikv)ψ̂(s − ikv)]
, (C1)

which was first obtained by CTRW formalism (see Eq. (9)
together with (11) in Ref. [14]). One can find the Laplace
transform of the second moment E{x2(t)} using ρ̃(k,s)
from (C1) as

E{x2(s)} = ∂2ρ̃(k,s)

∂(ik)2 |k=0

= 2v2

s3
+ 4v2ψ̂ ′(s)

s2[1 − ψ̂2(s)]
. (C2)

We consider the switching rate (8) with 1 < μ < 2 when the
first moment 〈T 〉 = ∫ ∞

0 τψ(τ )τ is finite, while the variance is
divergent. The small s expansion of ψ̂(s) can be written as

ψ̂(s) � 1 − 〈T 〉s + A〈T 〉sμ. (C3)

Substitution of (C3) into (C2) gives

E{x2(s)} � 2A(μ − 1)v2

s4−μ
.

This formula allows us to find the mean-squared displacement
E{x2(t)} which exhibits sub-ballistic superdiffusive behav-
ior [14],

E{x2(t)} � 2A(μ − 1)v2

�(4 − μ)
t3−μ,

as t → ∞.

APPENDIX D: VELOCITY AUTOCOVARIANCE
AND MEAN CELL POSITION

The purpose of this Appendix is to find the mean cell
position and to show that the cell velocity has a long memory
for μ < 1. Let the cell’s velocity at the initial time be positive,
v(0) = v, and then the velocity v(t) and the position x(t) of
cell can be defined as

v(t) = (−1)N(t)v, (D1)

x(t) = v

∫ t

0
(−1)N(u)du, (D2)

where N (t) is the random number of switching up to time
t [47]. Autocovariance Cv(t) = E(v(t)v(0)) and the mean cell

position E(x(t)) can be found as

Cv(t) = v2E{(−1)N(t)}

= v2
∞∑

n=0

(−1)nP (n,t),

E{x(t)} = vE

{∫ t

0
(−1)N(u)du

}

= v

∞∑
n=0

(−1)n
∫ t

0
P (n,u)du, (D3)

where P (n,t) = Pr(N (t) = n). We should note that in the
anomalous case μ < 1, the random velocity v(t) is a nonsta-
tionary process. The Laplace transforms of Cv(t) and E(x(t))
are

Ĉv(s) = v2
∞∑

n=0

(−1)nP̂ (n,s), (D4)

E{x̂(s)} = v

∞∑
n=0

(−1)n
P̂ (n,s)

s
, (D5)

where the Laplace transform of P (n,t) is given by [50]

P̂ (n,s) = ψ̃n(s)[1 − ψ̃(s)]

s
. (D6)

The substitution of (D6) into (D4) gives

Ĉv(s) = v2[1 − ψ̃(s)]

s

∞∑
n=0

(−1)nψ̃n(s)

= v2(1 − ψ̃(s)

s[1 + ψ̃(s)]
.

When the mean waiting time 〈T 〉 = ∫ ∞
0 τψ(τ )dτ is infinite,

the Laplace transform ψ̃(s) can be approximated for small s

by Eq. (28). In this case we obtain

Ĉv(s) � v2�(1 − μ)τμ

0

2s1−μ
,

E{x̂(s)} � v�(1 − μ)τμ

0

2s2−μ
.

The inverse Laplace transform gives the large time asymptotics
for 0 < μ < 1:

Cv(t) � v2τ
μ

0

2tμ
,

E{x(t)} � vτ
μ

0

2
t1−μ.
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