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1. Sketch graphs of the following real-valued functions of x satisfying

(a) f(x) = e−|x−1| − 1; (b) f(x) = ln(4− | x |). [4]

2. Sketch in the complex plane the region where complex values of z satisfy
2 <| 2z − 2 + 2i |< 4. [2]

3. By using implicit differentiation, find the derivative of the inverse trigono-
metric function

tan−1(x).

[4]

4. A function f is defined by

f(x) =
√
−2x− 1.

(a) Find a formula for the inverse function f−1(x);

(b) sketch the graphs of f−1(x) and f(x) using the same coordinate axes. [4]

5. Find an equation of the tangent line to the curve y = ex that is parallel to
the line

x− 4y = 1.

[4]

6. Find the limits

(a) lim
x→1

1− x+ lnx

1 + cos(πx)
; (b) lim

x→∞ x sin

(
π

x

)
. [4]

7. For what value of k does the equation

e2x = k
√
x

have exactly one solution. [5]
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8. Find the area of the region bounded by the curve y = sin(πx/2) and the
line y = x. [4]

9. Find the area enclosed by the ellipse

x2

a2
+

y2

b2
= 1.

[5]

10. Find the exact length of the curve x(t) = 1 + 3t2, y(t) = 4 + 2t3,
0 < t < 1. [5]

11. Find an equation of the plane that passes through the point (6, 0,−2)
and contains the line x = 4− 2t, y = 3 + 5t, z = 7 + 4t. [6]

12. Find the directional derivative of the function f(x, y) = x2ey at the point
(2, 0) in the direction of v⃗ = (1, 1). [4]

13. Evaluate the double integral∫ ∫
D
(3x+ 4y2)dA,

where D is the region in the upper half-plane bounded by the curves x2+y2 =
1 and x2 + y2 = 4. [8]

14. By using polar coordinates, or otherwise, find the volume of the solid
above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = 1. [10]

15. Find an equation of the tangent plane to the surface

−3x2 + y2 − 2x+ z = 0

at the point (1,−2, 1). Find the symmetric equations for the normal line to
this tangent plane. [6]

END OF EXAMINATION PAPER
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