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Abstract. A standard assumption of continuous time random walk (CTRW) processes is that there are
no interactions between the random walkers, such that we obtain the celebrated linear fractional equation
either for the probability density function of the walker at a certain position and time, or the mean
number of walkers. The question arises how one can extend this equation to the non-linear case, where the
random walkers interact. The aim of this work is to take into account this interaction under a mean-field
approximation where the statistical properties of the random walker depend on the mean number of walkers.
The implementation of these non-linear effects within the CTRW integral equations or fractional equations
poses difficulties, leading to the alternative methodology we present in this work. We are concerned with
non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would
not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers,
be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system.
Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic,
collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness.

1 Introduction

An essential assumption for a continuous time random
walk (CTRW) model is that the walkers do not interact
with each other. This is a premise which in the application
to e.g., biological systems may obscure important features.
It is well-established in biology that the walkers “sense”
the walker population indirectly via a chemotactic sub-
stance [1–8] or directly [7–12] as a result of interactions
or volume exclusion processes [13–15]. Inspired by the
demands of such model features, we seek to understand
the repercussions of including these interactions with the
mean population into the already known equations for
a CTRW. In the classical formulation where the walk-
ers do not interact, a CTRW is described by two integral
equations

P (x, t) = Ψ(t)P (x, 0) +

∫ t

0

j(x, τ)Ψ(t− τ)dτ,

j(x, t) = ψ(t)

∫
R3

dyλ(x− y)P (y, 0)

+

∫
R3

dyλ(x− y)

∫ t

0

ψ(t− τ)j(y, τ)dτ, (1)
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where P (x, t) is the probability density function (PDF)
of being at position x ∈ R3 at time t > 0. Further, j(x, t)
is the PDF of having just arrived, ψ(t) is the PDF of the
waiting times between jumps and λ(x) is the jump density
[16,17]. Consequently, Ψ(t) =

∫∞
t
ψ(u)du is the survival

function (probability of no jump occurring during [0, t])
[18]. Note that j(x, t) includes both the recent arrivals
at t > 0, as well as the contribution from walkers start-
ing from their initial (t = 0) spatial distribution P (x, 0).
Starting from this initial spatial distribution, the position
of the random walker is denoted by the random variable
X(t).

It is well-known that from these equations we obtain the
famous Montroll-Weiss equation which is given in Fourier-
Laplace space by

FL{P (x, t)} =
1− ψ̂(s)

s

F{P (x, 0)}
1− λ(k)ψ̂(s)

, (2)

where ψ̂(s) = L{ψ(t)} =
∫∞
0
ψ(t)e−stdt is the Laplace

transform of the PDF of the waiting times between jumps,
and λ(k) = F{λ(x)} =

∫
R3 λ(x)eik·xdx is the charac-

teristic function of the jump density. Anomalous walks
with a heavy-tailed waiting time PDF for large τ follow
ψ(τ) ∼ 1/τ1+µ with 0 < µ < 1. Thus, in the limit when
s → 0 we obtain the known asymptotic approximation

ψ̂(s) = 1 − (sτ0)µΓ (1 − µ) + O(s) where τ0 > 0. If the
anomalous random movement through space is symmet-
ric such that λ(k) = 1 − σ2k2 + O(k4) (where σ2 is the
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variance of the jumps and k2 = k · k), in the long-time
limit we find from (2) the fractional diffusion equation

∂P (x, t)

∂t
= 0D1−µ

t

[
Kµ∇2

xP (x, t)
]
, (3)

where Kµ is the generalised diffusion coefficient, 0D1−µ
t

the Riemann–Liouville derivative [19] and ∇2
x the Lapla-

cian operator. This equation describes subdiffusion which
is characterised by a mean squared displacement (MSD)〈
X2(t)

〉
∼ tµ. Equations (2) and (3) at the time of their

introduction constituted breakthroughs in the field, by the
argument that the key variable of interest is the waiting
time Ti the walker spent in a given state i (or location x)
before jumping elsewhere. This waiting time could have
a heavy tail in its distribution, thus allowing for anoma-
lous effects [16,20]. We now introduce a dependence on the
mean walker population which intuitively will either serve
to increase or decrease waiting times between jumps.

We term a negative response one wherein a local
increase in the mean number of walkers decreases the wait-
ing times. For power-law distributed waiting times this
has the potential to temper the anomalous effects. Nega-
tive responses arise naturally in systems with e.g. carrying
capacities or Allee effects which lead to overcrowding,
or competition between walkers [7,9,12]. Conversely, pos-
itive responses are ones wherein a local increase in the
mean number of walkers increases the waiting times.
Hence, systems with shorter waiting times could acquire
anomalous behaviour for a sufficiently large increase in
the waiting times. Positive responses are consistent with
walkers which exhibit social or collaborative behaviour,
or are indirect indications of favourable regions as seen
by the number of walkers they have already attracted.
A positive response need not occur immediately: there
may be a small local increase initially before the walkers
self-organise to prefer this region.

In nature one has observed both positive and negative
responses, corresponding to mutually favourable coexis-
tence or social behaviour (increased waiting times) and
hostility or competition (decreased waiting times), respec-
tively. Positive responses (which favour accumulation)
have been observed for a variety of bird species, red deer,
marmots and squirrels, while negative reponses (which
favour dispersals of large groups) have been observed for
certain gulls, roe deer, voles and badgers [11]. Reasons for
these positive or negative responses depend on the envi-
ronment the animals move in, the social tendencies they
exhibit and the predation to which they are susceptible.

The key challenge of this paper is implementing non-
linear positive and negative responses to the linear CTRW
model. If the statistical properties of the random walker
depend on the local average population, what is the
implication of this dependence on (1)–(3)? Naturally, the
waiting time is then affected by the mean number of walk-
ers, but how can these equations be extended to include
this effect? Attempts at including non-linear effects into
the equations have previously been made in [21–27]. In
the classical case of Markovian transport equations, one
can easily extend the description to include non-linear

effects. This is done by letting the jump rate depend on
the mean number of walkers [12,28]. However, anomalous
transport is non-Markovian and the answer to this ques-
tion becomes less trivial. While elegant in their simplicity,
we do not believe equations (1)–(3) constitute the best
starting point if one is to consistently introduce these
biologically motivated non-linearities into the transport.
Instead, we propose another method by which to achieve
our goal.

The chosen method by which these walker interac-
tions are introduced is by considering the escape rates
Ti at which they leave their current position/state i. If
a walker leaves its current position i at a constant rate
Ti = λ, we recover an exponential waiting time PDF
ψi(τ) = λe−λτ . However, an escape rate Ti(τ) = µi

τ+τ0
for

constant τ0, µi > 0 results in a power-law PDF ψi(τ) =

Ti(τ)e−
∫ τ
0

Ti(u)du = µi
τ+τ0

(
τ0

τ+τ0

)µi
∼ 1/τ1+µi . For those

readers so inclined this can be interpreted as a semi-
Markov process where the escape rate depends on the
age.

One can now introduce a dependence of the waiting
times on both the age τ and the mean local number of
walkers, ρi(t) at a position i via the escape rate Ti =
Ti(τ, ρi(t)). We shall show that this dependence on ρi(t)
can both induce and temper the anomalous effects.

In order to describe a negative response the escape rate
Ti(τ, ρi(t)) must increase with the number of walkers such
that ∂Ti

∂ρi
> 0. This is intuitively sound: if a region is above

the carrying capacity or overcrowded, the escape rate of
the walkers will increase. Conversely, a positive response
must decrease Ti(τ, ρi(t)) with the number of walkers such
that ∂Ti

∂ρ < 0. This is, the larger the group (and thereby

the more favourable the region), the lower the escape rate.
In Section 2 we introduce the key mathematical nota-

tion and our approach to the inclusion of non-linearities.
Section 3 illustrates the effects of tempered and induced
anomalous effects on a simplified two-state system.
Finally, Section 4 derives a new tempered fractional dif-
ferential equation for the distributed case of walkers on a
lattice. Section 5 concludes on our findings.

2 Structural density approach

Let us consider a random walk on a regular lattice of spac-
ing 1. Each possible position on the lattice thus takes a
value R = i for every site i ∈ Z, and has an associated
escape rate Ti. The position of a walker at a certain time
with respect to an arbitrary reference point is given by
X(t) ∈ i. Hence, X(0) = 2 denotes a walker present on
the lattice at position 2 at t = 0. The mean-field inter-
action between the walkers is applied locally to each site
i.

The walkers will wait for a certain time (or age) Ti at
a site before jumping elsewhere. We let this waiting time
be a random variable which is reset whenever the walker
leaves the site, and is thus independent of previous visits.
The jumps between sites happen with rates Ti (τ, ρi(t)),
which may differ for each site and depend on both the age
spent at the site (τ) as well as the current mean number of
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walkers at the site (ρi(t)). As a result of the latter depen-
dence, the escape rate depends implicitly on time. The key
factor which constrains our analysis is the dependence on
ρi(t). Because of this, we cannot ab initio introduce a wait-
ing time PDF with this dependence, but instead use the
escape rate from each site on the lattice.

As a consequence of our choice of waiting time Ti at a
site as our random variable, we consider the average den-
sity of walkers at a certain time with a certain residence
time (age). We call these the mean structural densities
ni (t, τ). That is, ni(t, τ)∆τ is a measure of the mean
walker population and gives the mean number of walk-
ers at site i at time t with ages in the interval (τ, τ +∆τ).
The total rate of change of ni(t, τ) must balance with
the escape rates from each site, such that we obtain the
mean-field equation:

∂ni
∂t

+
∂ni
∂τ

= −Ti (τ, ρi(t))ni. (4)

This approach has previously been employed to
study non-Markovian transport [8,29] and is due to
Cox and Miller [30]. Changes in each site are hence purely
a result of the walkers which leave. For simplicity, we
assume the standard initial condition at t = 0 where all
walkers across the lattice have zero age. That is, they are
all recent arrivals at their sites, such that

ni (0, τ) = ρ0i δ (τ) , (5)

where ρ0i is the initial spatial distribution of the walkers
across the sites. This assumption does not affect the long-
term dynamics on the lattice. Note that the dependence
Ti(τ, ρi(t)) is purely with other walkers in the same site,
such that we have zero-range interactions. Then, as ni is
the mean number of walkers at site i with a certain age,
the total mean number of walkers at the site is simply the
sum over these ages, which yields

ρi(t) =

∫ t

0

ni(t, τ)dτ. (6)

However, our methodology is flexible and can be extended
to account for finite range interactions beyond walk-
ers at the same site. To this end, we consider a mean
neighbourhood of walkers ρ̄i(t) defined by

ρ̄i(t) =
∑
j

ζ(i|j)ρj(t) =
∑
j

ζ(i|j)
∫ t

0

nj(t, τ)dτ, (7)

where the kernel ζ(i|j) governs the interactions of walk-
ers at site j with walkers at site i; a standard approach
when considering finite range interactions [31]. A process
interacting with walkers at other sites would thus have an
escape rate Ti(τ, ρ̄i(t)).

We must also include the boundary conditions which
describe what occurs to a walker when it jumps from one
site to another. This process is governed by the redistri-
bution kernel κ(j|i), the probability of entering site j if
leaving site i. Hence, new arrivals at a certain site are

apportioned from those which left other sites immediately
before:

ni(t, 0) =
∑
j

∫ t

0

Tj (τ, ρj(t))nj (t, τ)κ(i|j)dτ, (8)

where κ(j|i) is normalised. This formulation of the trans-
port has the advantage that it makes no assumptions
about the particular forms of the escape rates Ti, which
may include whatever non-linearities are desired.

If Ti = Ti(τ) and is not a function of ρi(t), then the
above methodology is equivalent to the results of (1) if
one lets i→ x and κ(i|j)→ λ(x− y). The key difference
between the two methods is that (1) describes probabil-
ities of a walker being at a certain point in time and
space, whereas our method concerns the mean number of
walkers. In Section 3 we apply our approach to non-linear
interactions occurring between two states, which may be
thought of as adjacent sites on the lattice.

3 Non-linear switching between two states

The aim of this section is to demonstrate the general the-
ory for a lattice simplified into two states which can be
thought of as neighbouring sites. We believe the essential
behaviour is preserved in this illustration and that key
results can be generalised to the full system.

Let us consider two states denoted by i ∈ {1, 2} with
escape rates Ti(τ, ρi(t)). We assume there are two differ-
ent, and independent, processes which affect the escape
rate: the waiting time since last arrival in the state, and
the mean number of walkers in the state. We shall discuss
two types of non-linearities resulting from considering the
mean population in a state: a positive response (leading
to reduced escape rates from the state – joint presence of
walkers is desirable) or a negative response (increasing the
escape rate from the state in order to avoid overcrowding).
These both introduce dependencies on the mean-field pop-
ulation of walkers in different ways, as shall be illustrated
in the respective escape rates.

In a two-state model all walkers which leave one
state must enter the other, where this process is called
an “event”. Using the method of characteristics (see
Appendix A), we can now solve (4); in doing so we assume
that the age spent in a state is less than the total time
elapsed. This is consistent with the initial condition given
by (5). The general solution to (4) is hence given by

ni(t, τ) = ni(t− τ, 0)

× exp

(
−
∫ t

t−τ
Ti(u− (t− τ), ρi(u))du

)
, (9)

where τ < t and we can identify a non-linear survival func-

tion Ψ̃i[t, ω|ρi] = e−
∫ t
ω
Ti(u−ω,ρi(u))du which is the proba-

bility of remaining at site i for a duration of time t− ω in
the interval [ω, t). Note that this probability depends on
the mean number of walkers in the state. Hence, (9) is the
statement that the current mean structural density in a
state consists of the earlier arrivals which remained (aged)
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until now. Using the relation ψ̃i[t, ω|ρi] = −∂Ψ̃i[t,ω|ρi]∂t , we
find that

ψ̃i[t, ω|ρi] = Ti(t− ω, ρi(t))Ψ̃i[t, ω|ρi]. (10)

By substitution of (9) into (6) and using (5), we can find
the mean number of walkers in a state

ρi(t) =ρ0i Ψ̃i[t, 0|ρi] +

∫ t

0

ni(ω, 0)Ψ̃i[t, ω|ρi]dω, (11)

which cannot be easily treated without specifying the
escape rate. However, in the case when the rate does not
depend on ρi, this simplifies to the convolution of ni(t, 0)

and Ψ̃i(t, ω), and there is thus a correspondence between
this equation and the first part of (1). However, (11) con-
siders the mean number of walkers instead of the PDF of
position in space of a single walker. It is also useful to
introduce a switching term Ii(t) for each state defined as

Ii[t|ρi] =

∫ t

0

Ti(τ, ρi(t))ni(t, τ)dτ

= ρ0i ψ̃i[t, 0|ρi] +

∫ t

0

ni(ω, 0)ψ̃i[t, ω|ρi]dω, (12)

where in the second line we have used (10). The switch-
ing term gives a flux at which the walkers leave the state,
taking into account their ages. Since the walkers’ ages are
constrained by (5) we need only consider waiting times
τ < t. From (8) we further know that in a two-state sys-
tem I1[t|ρ1] = n2(t, 0) and vice versa. We can hence again
observe that in the case where the escape rates do not
depend on ρi(t), (12) can be simplified in analogy to the
second part of (1).

We are interested in the total mean number of walk-
ers in each state, and how this quantity is related to the
switching terms. This can be obtained by differentiating
(6) and using (4) such that

dρi
dt

= ni(t, t) +

∫ t

0

∂ni(t, τ)

∂t
dτ

= ni(t, 0)−
∫ t

0

Ti(τ, ρi(t))ni(t, τ)dτ

= ni(t, 0)− Ii[t|ρi], (13)

where in the last line we have used (12). For state 1 we

can then use (8) to write dρ1
dt = I2 − I1 and dρ2

dt = I1 − I2.
These equations often constitute the starting point of
many random walks, with the explicit forms of I1,2[t|ρ1,2]
to be determined from the details of the random walk
[17,32–34]. However, the above method has the benefit
of providing a systematic method by which to obtain
these expressions. Here we have assumed a constant
number of walkers N =

∑
i ρi(t), such that we can write

ρ2(t) = N − ρ1(t).
We remind the reader that the trivial case of constant

escape rates Ti = λi yields Ii[t|ρi] = λiρi(t), such that we
obtain the well-known steady state distributions of the
walkers ρst1 = λ2/(λ1 +λ2) and ρst2 = λ1/(λ1 +λ2) (where
st indicates the value at steady state).

We have demonstrated the equivalence between the two
methods in the case when there is no dependence on
the mean number of walkers. The generalised expressions,

written via Ψ̃i[t, ω|ρi], do not always allow for further
analysis of the behaviour of the system as they cannot
generally be expressed as the convolution of two quanti-
ties. However, in the following case we demonstrate a case
where this is indeed possible by the separation of the age-
ing and non-linear effects. In particular, we consider an
escape rate with a negative response to a local increase in
walkers.

3.1 Non-linear tempering

Let us first consider the case when the escape rate from
each state is given by

Ti(τ, ρi(t)) =
µi

τ0 + τ
+ αi (ρi(t)) 0 < µi < 1, (14)

where αi > 0 is a positive function of the mean population
of walkers in the state. If αi is an increasing function of
ρi(t) such that ∂αi

∂ρi
> 0, then the escape rate (in addition

to the anomalous effects resulting from the age depen-
dence) increases with the number of walkers present in the
state. An example of such a form is given by αi = βρki ,
where β, k > 0. However, there are no restrictions on the
functional form of αi(ρi(t)). Naturally, for αi = 0 escape
events are anomalous with no tempering, and in the con-
stant case ∂αi

∂ρi
= 0 there is a constant tempering where

the precise number of walkers in the state has no effect.
This may well be a suitable approximation if αi is almost
unchanged when the walker population varies (very weak
dependence on the number of walkers).

The more walkers in the state, the lower the waiting
times in said state, which can lead to a tempering of
the anomalous effects in the case when µi < 1. Physi-
cal processes which are subject to such conditions often
have saturation limits or carrying capacities above which
an increase in the number of walkers is unfavourable and
there is a trend to decrease the population in the state.
Examples include ion concentrations present in certain
transporter channels [35] or regulators in the enzymes
which facilitate protein folding [36]. Another interpreta-
tion of such rates is that rather than functioning as an
internal regular (e.g. a carrying capacity), αi simply con-
tains geometrical or physical effects due to the finite size,
number of binding sites, binding radius, etc. of the state.
When filled to this limit, any new additions are very
weakly bound to the state and so the mean escape rate
from the state increases.

For the escape rate given in (14), the survival probabil-
ity takes the form

Ψ̃i[t, t− τ |ρi] = exp

(
−
∫ t

t−τ
Ti(u− (t− τ), ρi(u))du

)
=

(
τ0

τ + τ0

)µi
× exp

(
−
∫ t

t−τ
αi(ρi(u))du

)
. (15)
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This expression clearly has two factors: the standard
anomalous survival function

Ψi(τ) = e−
∫ τ
0

µi
τ0+udu =

(
τ0

τ + τ0

)µi
,

and a non-linear term which depends explicitly on the
prehistory via the integral over αi(ρi),

exp

(
−
∫ t

t−τ
αi(ρi(u))du

)
.

This second term includes the interactions of the walkers
with the mean population in each state and changes the
qualitative behaviour of the system. The reason for this
is clear: αi introduces decaying exponential terms which
eliminate the heavy tails of Ψi(τ) at sufficiently long times.
We thus have a tempering of the anomalous behaviour
of the system. It is convenient to introduce a tempering
functional fi[t|ρi] to be

fi[t|ρi] =

∫ t

0

αi(ρi(u))du. (16)

Hence, in addition to the non-Markovian effects arising
from the age-dependence of Ψi(τ), there are additional
non-linear effects resulting from the entire prehistory
of interactions. The form expressed in (15) is not con-
ducive to further analysis besides the observation that
the anomalous waiting times have a linear PDF ψi(τ) =
µi
τ0+τ

Ψi(τ). In order to utilise the convolution properties of
Laplace transforms, it is consequently helpful to rewrite
(15) as

Ψ̃i[t, t− τ |ρi] = Ψi(τ)e−fi[t|ρi]efi[t−τ |ρi]. (17)

We observe that net survival requires not leaving due to
ageing in a certain time interval, and not leaving due to
non-linear escape rate contributions in the interval [t −
τ, t) resulting from interactions with ρi.

If we define a memory kernel in Laplace space

K̂i(s) ≡
ψ̂i(s)

Ψ̂i(s)
=

sψ̂i(s)

1− ψ̂i(s)
, (18)

which is valid for any PDF, we thus obtain (see
Appendix B) a non-linear switching term. This obeys

Ii[t|ρi] = αi(ρi)ρi + e−fi[t|ρi]

×
∫ t

0

Ki(t− τ)efi[τ |ρi]ρi(τ)dτ, (19)

where it is important that the additional escape rate
αi not only leads to a separate flux, but also substan-
tially affects the flux resulting from the escape rate µi

τ0+τ

via the tempering functional of (16). So even if these
escape rates are assumed to be independent of each other,
they still couple in the total switching between the two

states. The switching term depends on the ages and
populations of walkers at all previous times due to its non-
Markovian structure, which makes it a highly non-trivial
expression for the movement of the walkers between the
two states. Similar expressions for the switching terms
have been obtained before in the context of proliferat-
ing glioma cells [37], reactions in spiny dendrites [38],
and persistent random walks with death [39]. Exponential
tempering factors have previously been found for subdif-
fusive reaction-transport processes [40,41]. For state 1 we
can then use (13) and (19) to write

dρ1
dt

= α2(ρ2)ρ2 + e−f2[t|ρ2]
∫ t

0

K2(t− τ)ef2[τ |ρ2]ρ2(τ)dτ

−α1(ρ1)ρ1 − e−f1[t|ρ1]

×
∫ t

0

K1(t− τ)ef1[τ |ρ1]ρ1(τ)dτ. (20)

If the process is purely anomalous with Ti(τ) = µi
τ0+τ

where 0 < µi < 1, then in the long time limit s → 0 we
obtain the result that

ψ̂i (s) = 1− Γ (1− µi) (τ0s)
µi +O(s). (21)

Consequently, the memory kernel is given by K̂i(s) =
s1−µi/[τµi0 Γ (1 − µi)]. This expression leads to the frac-
tional derivative imposed by the Riemann–Liouville oper-
ator

0D1−µi
t [ρi(t)] =

d

dt

∫ t

0

ρi(t− τ)dτ

Γ (µi)τ1−µi
, (22)

which in Laplace space obeys Lt{0D1−µi
t [ρi(t)]}(s)

= s1−µi ρ̂i(s) as s → 0 [19]. If both states are anoma-
lous with with different values of µ1,2, then the walkers
will slowly accumulate in the state with the smallest
value of µi. If µ2 < µ1, at long times one thus observes
ρ2(t) → N, ρ1(t) → 0. If one anomalous process is tem-
pered, effectively increasing the anomalous exponent in
that state, this could drastically change the long-term
behaviour of the entire system. Unsurprisingly, in a sys-
tem with one anomalous state and one with a constant
escape rate, the walkers will aggregate in the anomalous
state. This was shown by Shushin [42] and was recently
studied in the context of human residences [43], as well as
how aggregation is affected by degradation effects [44].

We shall now consider the effects of introducing an
anomalous waiting time PDF into a tempered two-state
system. As shown in Appendix B, we obtain the following
expression for the switching term

Ii[t|ρi] = αi(ρi)ρi +
e−fi[t|ρi]

τµi0 Γ (1− µi)

× 0D1−µi
t

[
efi[t|ρi]ρi(t)

]
. (23)
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It is clear that this expression contains a non-linear
tempered fractional operator

e−fi[t|ρi] 0D1−µi
t

[
efi[t|ρi]ρi(t)

]
,

acting on ρi(t). The linear case of fi(t) = γit has previ-
ously been studied in [45,46]. Implementing these switch-
ing terms we find that the mean rate of change of the
population of walkers obeys

dρ1
dt

= α2(ρ2)ρ2 +
e−f2[t|ρ2]

τµ2

0 Γ (1− µ2)
0D1−µ2

t

[
ef2[t|ρ2]ρ2(t)

]
−α1(ρ1)ρ1 −

e−f1[t|ρ1]

τµ1

0 Γ (1− µ1)

× 0D1−µ1

t

[
ef1[t|ρ1]ρ1(t)

]
, (24)

and dρ2
dt + dρ1

dt = 0. We thus have two non-linear expres-
sions for the mean number of walkers entering and leaving
each state. The fractional derivative is tempered by the
non-linear factor e−fi[t|ρi], which prevents the slow but
sure aggregation one would expect in the state with the
smallest anomalous exponent.

If one assumes that in the long-time limit a steady
state is reached where dρi/dt = 0, then the mean number
of walkers are constants ρsti (st denotes values at steady
state). Then,

0 = αst2 ρ
st
2 +

αst2 ρ
st
2

(αst2 τ0)µ2Γ (1− µ2)

−αst1 ρst1 −
αst1 ρ

st
1

(αst1 τ0)µ1Γ (1− µ1)
, (25)

where we have used the result that as t→∞
e−f

st
i [t|ρi]

0D1−µi
t

[
ef

st
i [t|ρi]ρsti

]
→ (αsti )1−µiρsti [44]. This

expression simplifies to

λ∗2(ρst2 )ρst2 = λ∗1(ρst1 )ρst1 , (26)

where we have introduced the effective escape rates

λ∗i (ρ
st
i ) = αi(ρ

st
i )

(
1 +

1

[αi(ρsti )τ0]µiΓ (1− µi)

)
, (27)

which are only valid as t → ∞ for a system in steady
state. Note that these rates λ∗i depend on the stationary
number of walkers in each state. Typically, τ0 � 1, such
that λ∗i = αi(ρ

st
i )1−µi/[τµi0 Γ (1 − µi)] + O(τ0). If αsti < 1

the rate of movement between the two states λ∗i increases.
Otherwise, if αsti > 1 the rate λ∗i decreases. Equation (27)
thus describes the effective rates of movement of walkers
between the two states. By manipulation of (26) we find
that

ρst1 = N

(
λ∗2

λ∗1 + λ∗2

)
, ρst2 = N

(
λ∗1

λ∗1 + λ∗2

)
, (28)

where is is important to note that these are non-linear
equations in ρsti due to the implicit dependences on αi(ρi).
The effective rates of movement from one state to the
other therefore depend on the chosen form of tempering,
but do not necessarily lead to the long-time aggregation of
all walkers in one state. However, over shorter time scales
the anomalous aggregation effects may still dominate the
dynamics.

Furthermore, from (9) we find that in the steady state
the mean structural density nsti obeys

nsti (τ) = nsti (0)Ψi(τ)e−f
st
i [τ |ρi], (29)

where from (8) nsti (0) = [1 − δij ]Istj → ρstj λ
∗
j (ρ

st
j ). Using

the result from (28) it follows that

nsti (τ) = N
λ∗1λ

∗
2

λ∗1 + λ∗2

(
τ0

τ + τ0

)µi
e−α

st
i τ , (30)

as t→∞. Note that this expression is also non-linear in
the expressions of the effective rates λ∗i .

If we consider only one of the two states to be tempered,
such that state i = 2 has a a constant escape rate k2, then
(24) becomes

dρ1
dt

= k2ρ2 − α1(ρ1)ρ1

− e−f1[t|ρ1]

τµ1

0 Γ (1− µ1)
0D1−µ1

t

[
ef1[t|ρ1]ρ1(t)

]
. (31)

We can rewrite (4) for state i = 1 to be

∂n1
∂t

+
∂n1
∂τ

= −
(

µ1

τ + τ0
+ α1(ρ1)

)
n1. (32)

In analogy to before, we consider the effects at steady
state where the walkers are still ageing but do not change
with time. Letting ∂nst1 /∂t = 0, (32) thus becomes

∂nst1
∂τ

= −
(

µ1

τ0 + τ
+ αst1

)
nst1 , (33)

where we have used the result that at steady state αst1 =
α1(ρst1 ) > 0 is constant as the mean number of walkers no
longer changes. The solution to this equation is given by

nst1 (τ) = k2ρ
st
2

(
τ0

τ0 + τ

)µ1

e−α
st
1 τ , (34)

which corresponds to the new arrivals k2ρ
st
2 and a survival

function Ψ1(τ) = τµ1

0 e−α
st
1 τ/(τ0 + τ)µ1 . The probability of

longer waiting times is still high, but no longer diverges
as a result of the tempering induced by the exponential

cut-off e−α
st
1 τ . The total mean number of walkers in the
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state can be found by integration:

ρst1 = k2ρ
st
2

∫ ∞
0

(
τ0

τ0 + τ

)µ1

e−α
st
1 τdτ

= k2ρ
st
2 τ0e

τ0α
st
1 (τ0α

st
1 )µ1−1Γ (1− µ1, τ0α

st
1 ), (35)

where Γ (a, x) =
∫∞
x
ta−1e−tdt is the incomplete Gamma

function [19]. By definition, we know that the mean wait-
ing time in a state is given by 〈Ti〉 =

∫∞
0
Ψi(τ)dτ , which

is exactly the above expression. Hence, we can write

ρst1 = k2ρ
st
2 〈T1〉 , (36)

where 〈T1〉 = τ0e
τ0α

st
1 (τ0α

st
1 )µ1−1Γ (1 − µ1, τ0α

st
1 ). Simi-

larly, 〈T2〉 = 1/k2. We underscore that this result is only
valid when α1(ρst1 ) > 0, as the integral otherwise diverges
for µ1 < 1. Since the total number of walkers is preserved,
we find that

ρst1 =
N 〈T1〉
〈T2〉+ 〈T1〉

. (37)

We have thus illustrated the various ways in which non-
linearities can be introduced such that anomalous effects
are tempered, as illustrated by our key results (28) and
(30). That is, the introduction of nonlinearities in the
dynamics has suppressed the anomalous behaviour one
might otherwise expect, allowing for the existence of a
steady-state solution. A crucial point of this as shown in
(27) is that the resulting rates change the form of this
steady-state solution by their dependence on the steady-
state population. However, anomalous behaviour is not
completely absent as the rates still depend on the anoma-
lous exponents µi. We turn now to the case when these
non-linearities might induce anomalous effects instead.
This is considered for the case wherein an increase in the
number of walkers in a state decreases the escape rate.

3.2 Self-organised anomaly (SOA)

The previously examined case lends itself most naturally
to a tempering of the anomalous behaviour such that
the escape rate from the state does not decrease indefi-
nitely. We are now interested in the opposite effect where
anomalous behaviour arises in the case when initially
µi > 1. If we consider a modified anomalous exponent
which depends on the mean number of walkers of the form
µi(ρi(t)) and let this be a decreasing function of ρi(t), we
can obtain a trapping state without a priori defining it to
be so. In particular, let the escape rate from state i = 1
be

T1(τ, ρ1(t)) =
µ1 (ρ1(t))

τ0 + τ
, (38)

and the escape rate from state i = 2 a constant

T2 = k2. (39)

Our reason for this choice is evident: we know that in the
long-time limit heavy-tailed waiting times with µ1 > 1
are analogous to a constant escape rate, and thus for ease
of illustration of the phenomenon, one state is fixed at a
constant escape rate. Using (13), we find that

dρ1
dt

= k2ρ2(t)− I1[t|ρ1], (40)

where again dρ2
dt + dρ1

dt = 0 by conservation of the total
number of walkers. In the long-time limit we expect to
reach the steady state of the system wherein the move-
ment between states is entirely balanced. In this case,
there are no variations with time (∂nst1 /∂t = 0), although
the walkers in each state still age. Let us write the
stationary distribution nst1 (τ) which from (4) follows

∂nst1
∂τ

= −T1(τ, ρst1 )nst1 . (41)

Note that since in the steady state ∂nst1 /∂t = 0, it follows
that ρst1 is constant such that µ1(ρst1 ) is also constant. By
substitution of (38) and integration we obtain the formula
(where we have used the result that nst1 (0) = k2ρ

st
2 )

nst1 (τ) = k2ρ
st
2

(
τ0

τ0 + τ

)µ1(ρst1 )
, (42)

which depends on the stationary total number of walkers
in state i = 1. We then obtain the ρst1 -dependent power
law survival function

Ψ1(τ, ρst1 ) =

(
τ0

τ0 + τ

)µ1(ρst1 )
, (43)

such that nst1 (τ) = k2ρ
st
2 Ψ1(τ, ρst1 ). This is a fairly intuitive

result: the stationary distribution of walkers in the state
corresponds to the number of walkers which entered the
state (k2ρ

st
2 ), modulated by the probability of surviving in

the state for a variety of ages (Ψ1(τ, ρst1 )). In order to find
the total number of walkers in the state we must integrate
over all ages using (6) such that

ρst1 = k2ρ
st
2

∫ ∞
0

(
τ0

τ0 + τ

)µ1(ρst1 )
dτ. (44)

It is imperative to note that in the above expression, the
result changes depending on the value of µ1 (ρst1 ) when

µ1

(
ρst1
)
< 1,

the above integral diverges as the first moment or mean
waiting time 〈T1〉 → ∞.

However, when µ1 (ρst1 ) > 1 we can solve (40) to obtain

ρst1 = k2ρ
st
2

τ0
µ (ρst1 )− 1

, ρst1 + ρst2 = N. (45)
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where at steady state the number of walkers in state i =
2 (ρst2 ) can be determined from the constant total number
of walkers N in the states. However, this result ceases to
hold as soon as µ1(ρ1) < 1.

A key feature of the behaviour observed in the states
is one of self-organised aggregation. State i = 1 need not
start in an anomalous configuration where µ1(ρ1(t)) < 1;
this can occur slowly as the state gradually gains a larger
population and eventually serves as a gathering point for
walkers. As such, the aggregation is a natural phenomenon
and not one we need to introduce artificially. Once there
is a sufficient amount of walkers in the state the value of
µ will decrease and the steady-state solution calculated
in (45) breaks down. That is, the system self-organises
between two states: one in which there is a steady state
distribution and another anomalous state where steady
state is never reached and aggregation ρ1(t)→ N, ρ2(t)→
0 occurs instead. In conjunction with (42), (45) constitutes
a key result of this paper where we demonstrate the emer-
gence of anomalous effects from the inclusion of mean-field
interactions. Some work has previously been carried out
on the self-organising phenomenon in anomalous trans-
port [21,22]. The marked difference in the behaviour of
the system depending on the value of µ1(ρ1(t)) can be
regarded as a self-organising phase transition, an already
well-documented phenomenon [47–49].

4 Non-linear distributed case with non-local
interactions

The aim of this section is to extend the previously consid-
ered two-state system to the distributed case. Secondly,
we incorporate non-local interactions between the walk-
ers across the entire space of the system. We consider
a one-dimensional space R1 (which can be easily gener-
alised to higher dimensions) where sites are separated by
a physical distance a. That is, a site at x will have neigh-
bours at x± a. As this spacing decreases, we approximate
the dynamics of an analogous continuous system. Escapes
from a site at x occur with rates T with equal prob-
ability to move in either direction. The walker is thus
equally likely to jump left or right. However, the inter-
actions between walkers need not be constrained only to
those present at the current lattice site but may be any-
where on the lattice. This motion is encompassed by the
equation

∂n

∂t
+
∂n

∂τ
= −T (x, τ, ρ̄[x|ρ])n. (46)

n(x, t, τ) is analogous to the quantity described in (4),
where each site is designated a spatial position instead of
an index i. We describe the non-local interactions between
the walkers via ρ̄[x|ρ] defined as

ρ̄[x|ρ] =

∫
R
G(x− y)ρ(y, t)dy, (47)

where G(x − y) is the appropriate kernel which governs
the interactions between walkers at different positions on

the lattice. Naturally, if G(x − y) = δ(x − y) we recover
an exclusive dependence on the local number of walkers
at the current site.

The mean total population of walkers at a certain
position in analogy to (11) follows

ρ(x, t) = ρ(x, 0)Ψ̃ [x, t, 0|ρ̄]

+

∫ t

0

n(x, ω, 0)Ψ̃ [x, t, ω|ρ̄]dω, (48)

but the survival function

Ψ̃ [x, t, ω|ρ̄] = exp

(
−
∫ t

ω

T(x, u− ω, ρ̄[x|ρ(x, u)])du

)
,

must now vary with space and ρ̄ instead of ρ. The
switching term is set to be

I[x, t|ρ̄] =

∫ t

0

T(x, τ, ρ̄[x|ρ])n(x, t, τ)dτ, (49)

which is analogous to (12) but with different spatial
dependence. By the same method employed in (13), we
find that

∂ρ(x, t)

∂t
= n(x, t, 0)− I[x, t|ρ̄]. (50)

Recent arrivals n(x, t, 0) at a certain position must come
from the adjacent neighbours, such that n(x, t, 0) =
1
2 (I[x − a, t|ρ̄] + I[x + a, t|ρ̄]). By substitution of this
condition into (50), we find that

∂ρ(x, t)

∂t
=
a2

2

×
(
I[x+ a, t|ρ̄]− 2I[x, t|ρ̄] + I[x− a, t|ρ̄]

a2

)
. (51)

Notice that the term in the bracket is the second spatial
derivative in discrete space, such that we can write

∂ρ(x, t)

∂t
=
a2

2

∂2I[x, t|ρ̄]

∂x2
+O(a3). (52)

If one assumes escape rates which are qualitatively similar
to those present in anomalous tempering (see (14)),

T(x, τ, ρ̄[x|ρ]) =
µ(x)

τ0 + τ
+ ρ̄[x|ρ]. (53)

Here, the interaction of the walker with the mean neigh-
bourhood ρ̄[x|ρ] thus affects the escape rate from a site,
where any additional features of the interactions can be
included into the kernel G(x− y) defined in (47). Previous
works have considered the consequences of spatially vary-
ing anomalous exponents µ(x) (see [33,50–52]). By the
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same methods as before, the survival function is given by

Ψ̃ [x, t, t− τ |ρ̄]

= exp

(
−
∫ t

t−τ
T(x, u− (t− τ), ρ̄[x|ρ(x, u)])du

)
=

(
τ0

τ + τ0

)µ(x)
exp

(
−
∫ t

t−τ
ρ̄[x|ρ(x, u)]du

)
. (54)

In analogy to before we can identify a spatially dependent

anomalous survival function Ψ(x, τ) = e−
∫ τ
0

µ(x)
τ0+udu

=
(

τ0
τ+τ0

)µ(x)
, and a non-linear term which depends

explicitly on the prehistory via the integral over ρ̄. As
before, it is sensible to introduce a tempering functional
f [x, t|ρ]

f [x, t|ρ] =

∫
R
dyG(x− y)

∫ t

0

ρ(y, u)du, (55)

which we notice is spatio-temporal by the dependence on
both prehistory and walkers in other lattice sites. This
spatio-temporal fractional tempering appears in the total
survival probability which equals

Ψ(x, τ)e−f [x,t|ρ]ef [x,t−τ |ρ], (56)

where Ψ(x, τ) =
(

τ0
τ+τ0

)µ(x)
. It follows that the mean total

population of walkers is given by

ρ(x, t) = e−f [x,t|ρ]

×
∫ t

0

Ψ(x, t− τ)ef [x,τ |ρ]n(x, τ, 0)dτ. (57)

Using (49) and the same methodology employed for (B.2),
we find that

I[x, t|ρ̄] = ρ̄[x|ρ(x, t)]ρ(x, t) + e−f [x,t|ρ]

×
∫ t

0

ψ(x, t− τ)ef [x,τ |ρ]n(x, τ, 0)dτ, (58)

where we have used ψ(x, τ) = µ(x)
τ0+τ

Ψ(x, τ) for an anoma-
lous waiting time PDF ψ. By rearranging and taking the
Laplace transform analogously to the result of (19),

I[x, t|ρ̄] = ρ̄[x|ρ(x, t)]ρ(x, t) + e−f [x,t|ρ]

×
∫ t

0

K(x, t− τ)ef [x,τ |ρ]ρ(x, τ)dτ, (59)

where the memory kernel K(x, τ) is defined in Laplace
space via the expression

K̂(x, s) =
ψ̂(x, s)

Ψ̂(x, s)
. (60)

By substitution of (59) into (52), we obtain the key result

∂ρ

∂t
=
a2

2

∂2

∂x2
[ρ̄[x|ρ(x, t)]ρ(x, t)]

+
a2

2

∂2

∂x2

[
e−f [x,t|ρ]

τ
µ(x)
0 Γ (1− µ(x))

× 0D1−µ(x)
t

(
ef [x,t|ρ]ρ(x, t)

)]
, (61)

which is only valid in the case when 0 < µ(x) < 1. In the
case when ρ̄(x, t) = 0, we find the simpler form

∂ρ

∂t
=

∂2

∂x2

[
Dµ(x) 0D1−µ(x)

t ρ(x, t)
]
, (62)

with a spatially dependent diffusion coefficient Dµ(x) =

a2[2τ
µ(x)
0 Γ (1 − µ(x))]−1 similar to the result derived in

[33]. Note that this is equivalent to (3) when µ does not
vary with x.

5 Discussion and conclusion

In this work we have introduced a general methodology for
the inclusion of mean-field interactions where the statisti-
cal properties of a random walker depend on the average
walker population ρ, either locally or non-locally. The
result is a significant qualitative change in the behaviour of
the systems as compared to standard results without this
mean-field dependence. In the past tempering in such sys-
tems has appeared as an imposed exponential factor with
the fractional derivative. In our work we do not modify
the residence time distribution, but rather obtain temper-
ing of long residence times as an emergent phenomenon
resulting from non-linear interactions. We thus manage to
obtain a natural tempering from a mean-field dependent
escape rate which does not suppose linearity of walker
interactions. We have illustrated how escape rates which
depend on the mean number of walkers can increase or
decrease the waiting time PDFs. This seemingly innocu-
ous effect has the ability to suppress the anomalous
behaviour of the system by decreasing the waiting times of
the random walker via well-established population effects
such as volume exclusion, carrying capacities, etc. (see
(28) and (30)). As a result of this tempering, the dynam-
ics are instead governed by non-linear effective rates like
(27) which depend on the average walker population. The
implicit dependence of (27) on the steady-state population
changes this steady-state population from what it other-
wise may have been. Crucially, it is the presence of the
tempering which allows this steady state to be obtained,
and its anomalous behaviour is not completely absent as
the rates still depend on the anomalous exponents µi.

We have also shown that the inclusion of mean-field
effects generates anomalous behaviour by an increase in
the waiting times in a certain state. This is a direct
result of these non-linear population effects and does not
arise in the linear case of no population dependence. This
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generation of anomalous behaviour corresponds to self-
organising behaviour resulting from the interaction of a
random walker with the mean population, and may arise
even for initial values of µ > 1. An increased mean number
of walkers in a certain state thus has be ability to further
the attractiveness of the state, effectively decreasing µ(ρi)
to fall below one (see (42) and (45)).

We have also shown that non-local interactions can be
incorporated into the distributed case of a series of walkers
arranged on a lattice in R1. We have derived a new frac-
tional diffusion equation (61) subject to spatio-temporal
tempering which lends itself to generalisation in higher
dimensions.

Future work will explore the repercussions of these non-
linearities on the resulting fractional diffusion equations. S.
Fedotov gratefully acknowledges the support of EPSRC grant
EP/N018060/1.
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Appendix A: Method of characteristics

This appendix demonstrates how to calculate the sur-
vival function of random walkers subject to non-linear
mean-field interactions using the method of characteris-
tics. Starting from (4) and considering movement along a
characteristic curve s, we find

dni
ds

= −Ti (τ(s), ρi(t(s)))ni, (A.1)

such that we can find dt/ds = 1 and dτ/ds = 1. Since we
assume τ < t, it follows that t− t0 = τ where t0 > 0 is the
time at which the current residence in the state started.
The characteristic is chosen to coincide with the age such
that τ |s=0 = 0 and t|s=0 = t0 = t − τ . Integrating the
above equation we find∫ w

0

dni
ni

= [lnni(t(s), τ(s))]
w
0

= −
∫ w

0

Ti(τ(s), ρi(t(s)))ds. (A.2)

Applying the above values and a change of variable u =
t(s), it follows that:

ln

(
ni(t, τ)

ni(t− τ, 0)

)
= −

∫ t

t0

Ti(u− t0, ρi(u))du, (A.3)

where using t0 = t− τ yields (9).

Appendix B: Derivation of a non-linear
switching term

This appendix demonstrates how to calculate the switch-
ing term from a given survival function (17) of the random
walk. By substitution of (17) into (11), we find

ρi(t) =e−fi[t|ρi]
∫ t

0

Ψi(t− τ)efi[τ |ρi]ni(τ, 0)dτ. (B.1)

From (14) it follows that

Ii[t|ρi] = αi(ρi)ρi + e−fi[t|ρi]

×
∫ t

0

µi
τ0 + τ

Ψi(τ)efi[t−τ |ρi]ni(t− τ, 0)dτ,

= αi(ρi)ρi + e−fi[t|ρi]

×
∫ t

0

ψi(t− τ)efi[τ |ρi]ni(τ, 0)dτ, (B.2)

where we have used (6), (12) and (17). One can rewrite
this such that

Ii[t|ρi]
e−fi[t|ρi]

=
αi(ρi)ρi
e−fi[t|ρi]

+

∫ t

0

ψi(t− τ)efi[τ |ρi]ni(τ, 0)dτ, (B.3)

which in Laplace space obeys Lt{Ii[t|ρi]efi[t|ρi]} =

Lt{αi(ρi)ρiefi[t|ρi]} + ψ̂i(s)Lt{ni(t, 0)efi[t|ρi]}. Tak-
ing the Laplace transform of (B.1), we find that

Lt{ρi(t)efi[t|ρi]} = Ψ̂i(s)Lt{ni(t, 0)efi[t|ρi]}. Then, if we
define a memory kernel

K̂i(s) ≡
ψ̂i(s)

Ψ̂i(s)
=

sψ̂i(s)

1− ψ̂i(s)
, (B.4)

which is valid for any PDF, we can write the switching
term in Laplace space as

Lt
{
Ii[t|ρi]
e−fi[t|ρi]

}
= Lt

{
αi(ρi)ρi
e−fi[t|ρi]

}
+K̂i(s)Lt

{
ρi(t)e

fi[t|ρi]
}
. (B.5)

By inversion of (B.5), we thus find (19):

Ii[t|ρi] = αi(ρi)ρi + e−fi[t|ρi]

×
∫ t

0

Ki(t− τ)efi[τ |ρi]ρi(τ)dτ. (B.6)

In the long-time limit the anomalous waiting time PDF is

given by ψ̂i (s) ' 1 − Γ (1 − µi) (τ0s)
µi , and the memory

kernel follows K̂i(s) = s1−µi/[τµi0 Γ (1− µi)]. This expres-
sion leads to the fractional derivative imposed by the
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Riemann–Liouville operator

0D1−µi
t [ρi(t)] =

d

dt

∫ t

0

ρi(t− τ)dτ

Γ (µi)τ1−µi
, (B.7)

which in Laplace space obeys Lt{0D1−µi
t [ρi(t)]}(s)

= s1−µi ρ̂i(s) as s → 0. From (B.5) and using (B.7), we
find that

Lt
{
Ii[t|ρi]
e−fi[t|ρi]

}
= Lt

{
αi(ρi)ρi
e−fi[t|ρi]

}
+

s1−µi

τµi0 Γ (1− µi)
Lt
{
efi[t|ρi]ρi(t)

}
= Lt

{
αi(ρi)ρi
e−fi[t|ρi]

}
+

1

τµi0 Γ (1− µi)
Lt

×
{
0D1−µi

t

[
efi[t|ρi]ρi(t)

]}
. (B.8)

Note that this is expressed as a modified Riemann–
Liouville operator, such that we obtain (23).
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