Introduction to Financial Mathematics - 20912
 Lecturer - Prof. Sergei Fedotov
 Exercise Sheet 8 - Bond Pricing

1. (a) Show that the equation for the bond price

$$
\frac{d V}{d t}=r(t) V-K(t)
$$

has the explicit solution

$$
V(t)=\exp \left(-\int_{t}^{T} r(s) d s\right)\left[F+\int_{t}^{T} K(y) \exp \left(\int_{y}^{T} r(s) d s\right) d y\right]
$$

where $r(t)$ is the risk-free interest rate, $K(t)$ is the dividend payment, $V(T)=F$.
(b) When the interest rate r is constant, show that

$$
V(t)=F e^{-r(T-t)}+\int_{t}^{T} K(y) e^{-r(y-t)} d y .
$$

2. (a) Find the bond price $V(t)$ at $t=0$, when the payment $K(t)=0$, and the interest rate $r(t)$ is

$$
r(t)=\frac{r_{1}}{1+t}+\frac{t r_{2}}{1+t},
$$

where r_{1} and r_{2} are constants.

Ans: $V(0)=F(1+T)^{\left(r_{2}-r_{1}\right)} \exp \left(-r_{2} T\right)$.
(b) Find the term structure of interest rate $Y(0, T)$ for $r(t)=\frac{r_{1}}{1+t}+\frac{t r_{2}}{1+t}$ and plot $r(t)$ and $Y(0, T)$ when

1) $r_{1}<r_{2}$;
2) $r_{1}>r_{2}$

Ans: $Y(0, T)=r_{2}+\left(r_{1}-r_{2}\right) \frac{1}{T} \ln (1+T)$.
3. Find the bond price at $t=0$, when the payment $K(t)=K=$ const and the interest rate $r(t)=r=$ const .

Ans: $\quad V(0)=e^{-r T}\left[F+K \frac{e^{r T}-1}{r}\right]$.

