Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Exercise Sheet 6 - Black-Scholes Equation and Greeks

Recall that the Black-Scholes equation

$$
\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S}-r C=0
$$

has the explicit solution for the European call option:

$$
C(S, t)=S N\left(d_{1}\right)-E e^{-r(T-t)} N\left(d_{2}\right)
$$

where

$$
N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y, \quad d_{1}=\frac{\ln (S / E)+\left(r+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}, d_{2}=d_{1}-\sigma \sqrt{T-t}
$$

1. Show by substitution that the following functions are the exact solutions of the Black-Scholes equation
(a) $C(S, t)=A S,(A$ is the arbitrary constant $)$;
(b) $C(S, t)=S-K e^{-r(T-t)}$ (the value of the forward contract, where $K=$ const is the delivery price)
2. Find all parameters α for which the function $C(S, t)=S^{\alpha} e^{-r(T-t)}$ is the solution of the BlackScholes equation.

Ans: $\alpha_{1}=0$ and $\alpha_{2}=1-\frac{2 r}{\sigma^{2}}$.
3. Calculate the price of a three-month European call option on a stock with a strike price $\$ 60$ when the current stock price is $\$ 80$. The risk-free interest rate is 10% per annum. The volatility is 30%.

Ans: $C_{0}=21.549$

4. The Greek Letters.

Show that (a) (not easy!)

$$
\Delta=\frac{\partial C}{\partial S}=N\left(d_{1}\right)
$$

Hint: use the explicit solution for the European call option
(b)

$$
\Gamma=\frac{\partial^{2} C}{\partial S^{2}}=\frac{N^{\prime}\left(d_{1}\right)}{S \sigma \sqrt{T-t}}
$$

(c)

$$
\Theta=\frac{\partial C}{\partial t}=-\frac{\sigma S N^{\prime}\left(d_{1}\right)}{2 \sqrt{T-t}}-r E e^{-r(T-t)} N\left(d_{2}\right)
$$

(Hint: use the expressions for Δ, Γ, the Black-Scholes equation and its exact solution)

