
Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Exercise Sheet 6 - Black-Scholes Equation and Greeks

Recall that the Black-Scholes equation
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has the explicit solution for the European call option:

C(S, t) = SN (d1)− Ee−r(T−t)N (d2) ,
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1. Show by substitution that the following functions are the exact solutions of the Black-Scholes
equation

(a) C (S, t) = AS, (A is the arbitrary constant);

(b) C (S, t) = S −Ke−r(T−t) (the value of the forward contract, where K = const is the delivery
price)

2. Find all parameters α for which the function C(S, t) = Sαe−r(T−t) is the solution of the Black-
Scholes equation.

Ans: α1 = 0 and α2 = 1− 2r
σ2 .

3. Calculate the price of a three-month European call option on a stock with a strike price $60 when
the current stock price is $80. The risk-free interest rate is 10% per annum. The volatility is 30%.

Ans: C0 = 21.549

4. The Greek Letters.

Show that (a) (not easy!)
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Hint: use the explicit solution for the European call option
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(Hint: use the expressions for ∆ , Γ , the Black-Scholes equation and its exact solution)
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