Introduction to Financial Mathematics - 20912
 Lecturer - Prof. Sergei Fedotov

Exercise Sheet 4 - Binomial Model

1. One-step binomial model. A stock price is currently $\$ 100$. It is known that at the end of three months it will be either $\$ 110$ or $\$ 90$. The risk-free interest rate is 5% per annum with continuous compounding.

What is the value of three-month European call option with a strike price of $\$ 95$? Verify that noarbitrage arguments and risk-neutral valuation give the same answer.

Ans: $\$ 8.3385$
2. One-step binomial model. A stock price is currently $\$ 80$. It is known that at the end of four months it will be either $\$ 75$ or $\$ 85$. The risk-free interest rate is 5% per annum with continuous compounding.

What is the value of four-month European put option with a strike price of $\$ 80$?
Hint: $P_{0}=e^{-r T}\left[p P_{u}+(1-p) P_{d}\right]$.

Ans: $\$ 1.7975$
3. Two-step binomial tree. Stock price starts at $\$ 20$ and in each of the next two three-month periods may go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with continuous compounding.

What is the value of six-month European call option with a strike price of $\$ 21$? (Hint: repeatedly apply the principles established for one-period model).

Ans: 1.2822
4. Risk-Neutral World. Consider a two-step binomial tree with $u=1.2$ and $d=0.9$. Initial stock price $S_{0}=40$. The interest rate is 5% p.a, compounded continuously.

Work out the probability distribution of stock price in six months in a risk-neutral world.

Ans: The stock price takes the values $57.6,43.2$ and 32.4 with the probabilities $0.141,0.469$ and 0.390 .

5 (not easy!). Binomial tree: matching volatility σ with u and d.
By using three equations

$$
q u+(1-q) d=e^{\mu \Delta t}, \quad q u^{2}+(1-q) d^{2}-(q u+(1-q) d)^{2}=\sigma^{2} \Delta t, \quad d=u^{-1}
$$

find that

$$
u=e^{\sigma \sqrt{\Delta t}} \approx 1+\sigma \sqrt{\Delta t}, \quad \text { Cox, Ross, Rubinstein }
$$

Use notes.

