Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Exercise Sheet 3 - No Arbitrage Principle, Upper and Lower Bounds

1. Using no-arbitrage arguments: $\Pi_T \ge 0$ then $\Pi_t \ge 0$ for $0 \le t \le T$, prove the following simple bounds on European call options with the exercise price E:

(a)

$$C_t \leq S_t, \qquad 0 \leq t \leq T.$$

where $C_t = C(S_t, t)$. Hint: Consider the portfolio $\Pi = S - C$ at time t = T.

(b)

$$S_t - E \exp\left(-r\left(T - t\right)\right) \le C_t, \qquad 0 \le t \le T.$$

Hint: consider the portfolio $\Pi = C - S + B$, where B is the risk-free bond with face value E at time T.

(c) If two otherwise identical calls have strike prices E_1 and E_2 with $E_1 < E_2$, then

$$0 \leq C_t (E_1) - C_t (E_2) \leq E_2 - E_1$$

Hint: consider the portfolio $\Pi = C(E_1) - C(E_2)$, where $C(E_1)$ and $C(E_1)$ are the values of calls with strike prices E_1 and E_2 respectively.

2. (a) Find a lower bound for the European call option with the exercise price $\pounds 15$ when the stock price is $\pounds 21$, the time to maturity is six months, and the risk-free interest rate is 8% per annum.

(b) Consider the situation where the European call option is $\pounds 5$ which is less that the theoretical minimum $\pounds 6.588$. Show that there exists an arbitrage opportunity.

Hint: consider the portfolio $\Pi = C + B - S$, where B is the risk-free bond with current value £16.

3. Show that a lower bound for an European put P_0 is

$$E\exp\left(-rT\right)-S_0.$$

Hint: use Put-Call parity.

4. The upper bound for an European put P_0 is

 $E\exp\left(-rT\right)$.

Show that if this is not true, then one can make a riskless profit (arbitrage opportunity). Hint: consider the portfolio $\Pi = -P + B$.