Introduction to Financial Mathematics - 20912

 Lecturer - Prof. Sergei Fedotov

 Lecturer - Prof. Sergei Fedotov}

Exercise Sheet 1

1. (Warming up). What is the interest rate if a deposit subject to continuous compounding is doubled after 12 years? Ans: 5.78%.
2. (Warming up). What is the difference between $£ 140$ deposited at 10% compounded monthly ($m=12$) and compounded continuously after one year? Ans: about $£ 0.06$

In what follows the stock price $S(t)$ obeys the stochastic differential equation

$$
d S=\mu S d t+\sigma S d W
$$

where μ is the expected return, σ is the volatility, $W(t)$ is a standard Wiener process (Brownian motion).
3. Suppose that the expected return from a stock is 14% per annum and the volatility is 20%. Initial stock price is $\$ 90$. By using $d W \approx X \sqrt{\Delta t}$, where X is $N(0,1)$, calculate the increase ΔS in the stock price during three days.

Ans: $\Delta S \approx 0.104+1.632 X$
4. Suppose that a stock price has an expected return of 36% per annum and a volatility of 40%. When the stock price at the end of a certain day is $\$ 80$, calculate the following
(a) the expected stock price at the end of the next day; Ans: 80.079;
(b) the standard deviation of the stock price at the end of the next day; Ans: 1.675
5. If $d S=\mu S d t+\sigma S d W$, and A and n are constants, find the SDE satisfied by (use Ito's Lemma)
(a) $\quad f(S)=A S+t^{2}, \quad\left(\right.$ Ans: $\left.\quad d f=\left(2 t+\mu\left(f-t^{2}\right)\right) d t+\sigma\left(f-t^{2}\right) d W\right)$
(b) $f(S)=S^{1 / 2}, \quad\left(\right.$ Ans: $\left.\quad d f=\left(\mu / 2-\sigma^{2} / 8\right) f d t+\sigma / 2 f d W\right)$
(c) $\quad f(S)=S^{n} \quad\left(\right.$ Ans: $\left.\quad d f=\left(\mu n+\frac{1}{2} \sigma^{2} n(n-1)\right) f d t+\sigma n f d W\right)$
6. Suppose that initial stock price is $\$ 90$, the expected return from a stock is 24% per annum, and the volatility is 35%. Find the distribution of $\ln (S)$ in eight months' time.

Ans: $\ln S \sim N(4.619,0.082)$
7. (not easy!!) Show that the probability density function $p(y, t)$ for the Wiener process $W(t)$

$$
\left.p(y, t)=\frac{\partial}{\partial y} \mathbb{P}(W(t) \leq y)\right)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{y^{2}}{2 t}\right)
$$

obeys the following differential equation

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \frac{\partial^{2} p}{\partial y^{2}} .
$$

