Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Solutions - 7

1. We have

$$
C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)
$$

where $C_{1}(S, t)$ satisfies the classical Black-Scholes equation with r replaced by $r-D_{0}$. The value of $C_{1}(S, t)$ is therefore just that of a normal European call with interest rate $r-D_{0}$:

$$
C_{1}(S, t)=S N\left(d_{10}\right)-E e^{-\left(r-D_{0}\right)(T-t)} N\left(d_{20}\right)
$$

where

$$
d_{10}=\frac{\ln (S / E)+\left(r-D_{0}+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}, d_{20}=d_{10}-\sigma \sqrt{T}
$$

2. In this case $D_{0}=0.01, S_{0}=80, E=60, T=0.25, \sigma=0.3$ and $r=0.1$. First, we compute the values of d_{10} and d_{20} at $t=0$:

$$
\begin{gathered}
d_{10}=\frac{\ln (S / E)+\left(r-D_{0}+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}=\frac{\left.\ln \left(\frac{80}{60}\right)+\left(0.1-0.01+(0.3)^{2} \times 0.5\right)\right) \times 0.25}{0.3 \times \sqrt{0.25}} \approx 2.1429 \\
d_{20}=d_{10}-\sigma \sqrt{T-t}=2.1429-0.3 \times \sqrt{0.25} \approx 1.9929
\end{gathered}
$$

The value of call option is

$$
C_{0}=S e^{-D_{0} T} N\left(d_{10}\right)-E e^{-r T} N\left(d_{20}\right)
$$

Since

$$
N(2.1429) \approx 0.9839, \quad N(1.9929) \approx 0.9769
$$

then

$$
C_{0}=80 \times e^{-0.01 \times 0.25} \times 0.9839-60 \times e^{-0.1 \times 0.25} \times 0.9769 \approx 21.349
$$

3. This exercise is very similar to one from problem sheet 6 , part 4 a .

$$
\Delta=\frac{\partial C}{\partial S}=e^{-D_{0}(T-t)} N\left(d_{10}\right)
$$

4. If $S \rightarrow \infty$, then $d_{10} \rightarrow \infty$ and $d_{20} \rightarrow \infty$. Therefore $N\left(d_{10}\right) \rightarrow 1$ and $N\left(d_{20}\right) \rightarrow 1$.

As $S \rightarrow \infty$, it follows from

$$
C(S, t)=S e^{-D_{0}(T-t)} N\left(d_{10}\right)-E e^{-r(T-t)} N\left(d_{20}\right)
$$

that

$$
C(S, t) \rightarrow S e^{-D_{0}(T-t)}
$$

For large S it is certainly below the payoff $C(S, T)=S-E \rightarrow S$, since $e^{-D_{0}(T-t)}$ is less than one.

