Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Solutions - 7

1. We have

$$C(S,t) = e^{-D_0(T-t)}C_1(S,t),$$

where $C_1(S,t)$ satisfies the classical Black-Scholes equation with r replaced by $r - D_0$. The value of $C_1(S,t)$ is therefore just that of a normal European call with interest rate $r - D_0$:

$$C_1(S,t) = SN(d_{10}) - Ee^{-(r-D_0)(T-t)}N(d_{20}),,$$

where

$$d_{10} = \frac{\ln(S/E) + (r - D_0 + \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}}, \ d_{20} = d_{10} - \sigma\sqrt{T}.$$

2. In this case $D_0 = 0.01$, $S_0 = 80$, E = 60, T = 0.25, $\sigma = 0.3$ and r = 0.1. First, we compute the values of d_{10} and d_{20} at t = 0:

$$d_{10} = \frac{\ln\left(S/E\right) + \left(r - D_0 + \sigma^2/2\right)T}{\sigma\sqrt{T}} = \frac{\ln\left(\frac{80}{60}\right) + \left(0.1 - 0.01 + \left(0.3\right)^2 \times 0.5\right)\right) \times 0.25}{0.3 \times \sqrt{0.25}} \approx 2.1429$$

 $d_{20} = d_{10} - \sigma \sqrt{T - t} = 2.1429 - 0.3 \times \sqrt{0.25} \approx 1.9929$

The value of call option is

$$C_0 = Se^{-D_0 T} N(d_{10}) - Ee^{-rT} N(d_{20}).$$

Since

$$N(2.1429) \approx 0.9839, \quad N(1.9929) \approx 0.9769$$

then

$$C_0 = 80 \times e^{-0.01 \times 0.25} \times 0.9839 - 60 \times e^{-0.1 \times 0.25} \times 0.9769 \approx 21.349$$

3. This exercise is very similar to one from problem sheet 6, part 4a.

$$\Delta = \frac{\partial C}{\partial S} = e^{-D_0(T-t)} N(d_{10}).$$

4. If $S \to \infty$, then $d_{10} \to \infty$ and $d_{20} \to \infty$. Therefore $N(d_{10}) \to 1$ and $N(d_{20}) \to 1$. As $S \to \infty$, it follows from

$$C(S,t) = Se^{-D_0(T-t)}N(d_{10}) - Ee^{-r(T-t)}N(d_{20})$$

that

$$C(S,t) \to Se^{-D_0(T-t)}.$$

For large S it is certainly below the payoff $C(S,T) = S - E \rightarrow S$, since $e^{-D_0(T-t)}$ is less than one.