Introduction to Financial Mathematics - 20912

Lecturer - Prof. Sergei Fedotov

Solutions 5

1. Two-step binomial tree. In this case $u=1.1, d=0.9, r=0.12, E=42$. There are two time steps of $\Delta t=\frac{1}{4}$

The value of the risk-neutral probability.

$$
p=\frac{\exp (0.12 \times 0.25)-0.9}{1.1-0.9}=0.6523
$$

The possible final asset prices are $40 \times(1.1)^{2}=48.4,40 \times 1.1 \times 0.9=39.6$ and $40 \times(0.9)^{2}=32.4$. The corresponding payoff: $p_{u u}=0, p_{u d}=42-39.6=2.4, p_{d d}=42-32.4=9.6$.

Then for the European put option

$$
\begin{gathered}
p_{u}=\exp (-0.12 \times 0.25) \times[0.6523 \times 0+(1-0.6523) \times 2.4]=0.8098 \\
p_{d}=\exp (-0.12 \times 0.25) \times[0.6523 \times 2.4+(1-0.6523) \times 9.6]=4.7585
\end{gathered}
$$

Finally, the value of a 6 -month European put option is

$$
p_{0}=\exp (-0.12 \times 0.25) \times[0.6523 \times 0.8098+(1-0.6523) \times 4.7585]=2.1183
$$

For the American put option:
the payoff from early exercise at time Δt is $42-40 \times 1.1=-2.0$ and $42-40 \times 0.9=6.0$. In the later case early exercise is optimal $(6.0>4.7585)$, the value of the American put option should be 6 rather than 4.7585 .

Therefore the value at $t=0$ is

$$
p_{0}=\exp (-0.12 \times 0.25) \times[0.6523 \times 0.8098+(1-0.6523) \times 6]=2.5372
$$

The payoff at $t=0$ is $42-40=2$. It is not optimal.
2. Initial stock price is S_{0}. Stock price can either move up to $S_{0} u$ or down to $S_{0} d$. Consider a portfolio consisting of a long position in Δ shares and a short position in N numbers of bonds: $\Pi=\Delta S-N B$. At maturity

$$
\Pi(T)=\left\{\begin{array}{l}
\Delta S_{0} u-N B_{0} e^{r T}, \\
\Delta S_{0} d-N B_{0} e^{r T},
\end{array}\right.
$$

Let us find Δ and $N B_{0}$ when

$$
\begin{aligned}
\Delta S_{0} u-N B_{0} e^{r T} & =C_{u} \\
\Delta S_{0} d-N B_{0} e^{r T} & =C_{d}
\end{aligned}
$$

One can find that

$$
\Delta=\frac{C_{u}-C_{d}}{S_{0} u-S_{0} d}
$$

and

$$
N B_{0}=\frac{C_{u} d-C_{d} u}{u-d} e^{-r T}
$$

The cost of setting up this portfolio is $S_{0} \Delta-N B_{0}$. Therefore

$$
C_{0}=S_{0} \Delta-N B_{0}=\frac{C_{u}-C_{d}}{u-d}-\frac{C_{u} d-C_{d} u}{u-d} e^{-r T}
$$

or

$$
C_{0}=e^{-r T} \mathbf{E}\left[C_{T}\right]=e^{-r T}\left[p C_{u}+(1-p) C_{d}\right],
$$

where

$$
p=\frac{e^{r T}-d}{u-d}
$$

3. Since the put-call parity is violated, $7.78<5.09-20.37+24 e^{-0.0748 \times 0.5}=7.8390$, there exist an arbitrage opportunity.

We set up the portfolio $\Pi=S+P-C-B$ such that $\Pi_{0}=20.37+7.78-5.09-23.06=0$. The balance is zero!

After six months:

$$
\Pi_{T}=E-23.06 \times e^{0.0748 \times 0.5}=24-23.06 \times e^{0.0748 \times 0.5} \approx 0.06
$$

This is an arbitrage profit. Note that $S+P-C=E$ at $t=T$.

