Introduction to Financial Mathematics - 20912
 Lecturer - Prof. Sergei Fedotov

Exercise Sheet 4: Solutions

1. In this case $S_{0}=100, u=1.1, d=0.9, r=0.05, T=0.25, C_{u}=15, C_{d}=0$.

No-arbitrage arguments: the number of shares

$$
\Delta=\frac{C_{u}-C_{d}}{S_{0} u-S_{0} d}=\frac{15-0}{100 \times 1.1-100 \times 0.9}=0.75
$$

and the value of call option

$$
C_{0}=S_{0} \Delta-\left(S_{0} u \Delta-C_{u}\right) e^{-r T}=100 \times 0.75-(100 \times 1.1 \times 0.75-15) \times e^{-0.05 \times 0.25}=8.3385
$$

Risk-neutral valuation: one can find the probability p

$$
p=\frac{e^{r T}-d}{u-d}=\frac{e^{0.05 \times 0.25}-0.9}{1.1-0.9}=0.56289
$$

and the value of call option

$$
C_{0}=e^{-r T}\left[p C_{u}+(1-p) C_{d}\right]=e^{-0.05 \times 0.25}[0.56289 \times 15+0]=8.3385
$$

2. In this case $u=\frac{85}{80}, d=\frac{75}{80}, r=0.05, T=\frac{1}{3}, P_{u}=0, P_{d}=5$.

Risk-neutral valuation: one can find the probability p

$$
p=\frac{e^{r T}-d}{u-d}=\frac{e^{0.05 \times \frac{1}{3}}-\frac{75}{80}}{\frac{85}{80}-\frac{75}{80}}=0.63445
$$

and the value of put option

$$
P_{0}=e^{-r T}\left[p P_{u}+(1-p) P_{d}\right]=e^{-0.05 \times \frac{1}{3}}[0+(1-0.63445) \times 5]=1.7975
$$

3. In this case $u=1.1, d=0.9, r=0.12, \Delta t=0.25, T=2 \Delta t$.

Risk-neutral valuation: one can find the probability p

$$
p=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.12 \times 0.25}-0.9}{1.1-0.9}=0.65227
$$

The value of call option C_{0} is

$$
C_{0}=e^{-r \Delta t}\left[p C_{u}+(1-p) C_{d}\right]=e^{-0.12 \times 0.25}[0.6523 \times 2.0256+0]=1.2822
$$

where

$$
\begin{gathered}
C_{u}=e^{-r \Delta t}\left[p C_{u u}+(1-p) C_{u d}\right]=e^{-0.12 \times 0.25}[0.65 \times 3.2+0]=2.0256 \\
C_{d}=e^{-r \Delta t}\left[p C_{u d}+(1-p) C_{d d}\right]=0
\end{gathered}
$$

(see two-step tree).
4. $\Delta t=0.25$

The risk-neutral probability p is $\frac{e^{0.05 \times 0.25}-0.9}{1.2-0.9}=0.3753$. So with probability $p^{2}=0.141, S_{0} u^{2}=$ $40 \times(1.2)^{2}=57.6$, with probability $2 p(1-p)=2 \times 0.3753 \times(1-0.3753)=0.4689, S_{0} u d=40 \times 1.2 \times 0.9=$ 43.2 and with probability $(1-p)^{2}=(1-0.3753)^{2}=0.390$,
$S_{0} d^{2}=40 \times(0.9)^{2}=32.4$
5. We have three equations

$$
q u+(1-q) d=e^{\mu \Delta t}, \quad q u^{2}+(1-q) d^{2}-(q u+(1-q) d)^{2}=\sigma^{2} \Delta t, \quad d=u^{-1}
$$

for three unknown parameters u, d and q. From the first equation we find

$$
q=\frac{e^{\mu \Delta t}-d}{u-d}
$$

Substituting from the last equation into the second equation, we get

$$
e^{\mu \Delta t}(u+d)-u d-e^{2 \mu \Delta t}=\sigma^{2} \Delta t
$$

By using series expansions $e^{\mu \Delta t} \approx 1+\mu \Delta t, e^{2 \mu \Delta t} \approx 1+2 \mu \Delta t$ and $d=u^{-1}$, we get an equation for u

$$
(1+\mu \Delta t)\left(u+u^{-1}\right)-2-2 \mu \Delta t=\sigma^{2} \Delta t
$$

or

$$
u^{2}+1=u \frac{2+2 \mu \Delta t+\sigma^{2} \Delta t}{1+\mu \Delta t}=2 u+u \frac{\sigma^{2} \Delta t}{1+\mu \Delta t}=u\left(2+\sigma^{2} \Delta t\right)+o(\Delta t)
$$

The purpose now is to find u as a function of $\sqrt{\Delta t}$. Last equation can be rewritten as quadratic equation: $u^{2}-2 k u+1=0$ with $k=1+\frac{\sigma^{2} \Delta t}{2}$. The solution is $u=k+\sqrt{\left(k^{2}-1\right)}>1$. Substituting $k=1+\frac{\sigma^{2} \Delta t}{2}$ into $u=k+\sqrt{\left(k^{2}-1\right)}$, we get

$$
u=1+\frac{\sigma^{2} \Delta t}{2}+\sqrt{\left(1+\frac{\sigma^{2} \Delta t}{2}\right)^{2}-1}=1+\frac{\sigma^{2} \Delta t}{2}+\sqrt{\sigma^{2} \Delta t+\left(\frac{\sigma^{2} \Delta t}{2}\right)^{2}}
$$

If we expand this in a Taylor series in terms of $\sqrt{\Delta t}$, we obtain

$$
u \approx 1+\sigma \sqrt{\Delta t}
$$

Since $\sqrt{\Delta t}$ is small, we can write

$$
u \approx e^{\sigma \sqrt{\Delta t}} \approx 1+\sigma \sqrt{\Delta t} \quad \text { Cox, Ross, Rubinstein }(1979)
$$

