Introduction to Financial Mathematics - 20912
 Lecturer - Prof. Sergei Fedotov

Exercise Sheet 3: Solutions

1. (a) Consider $\Pi=S-C$. At maturity $t=T$

$$
\Pi_{T}=S-\max (S-E, 0)=\left\{\begin{array}{l}
S, S \leq E \\
E, S>E
\end{array}\right.
$$

so $\Pi_{T} \geq 0$. Since a portfolio with positive terminal value must have positive value (by no-arbitrage) at any time: $\Pi_{t}=S_{t}-C_{t} \geq 0$, therefore $C_{t} \leq S_{t}$.
(b) Consider the portfolio $\Pi=C-S+B$, where B is the risk-free bond with face value E at time T . It follows from

$$
\Pi_{T}=\max (S-E, 0)-S+E=\left\{\begin{array}{c}
-S+E, S \leq E \\
0, S>E
\end{array}\right.
$$

that $\Pi_{T} \geq 0$, and so (by no-arbitrage) at any time: $\Pi_{t}=C_{t}-S_{t}+E \exp (-r(T-t)) \geq 0$, i.e. $C_{t} \geq$ $S_{t}-E \exp (-r(T-t))$.
(c) Consider the portfolio $\Pi=C\left(E_{1}\right)-C\left(E_{2}\right)$ with $\left.E_{1}<E_{2}\right)$. At maturity $t=T$

$$
\Pi_{T}=\left\{\begin{array}{c}
0, S_{T} \leq E_{1} \\
S-E_{1}, E_{1} \leq S<E_{2} \\
E_{2}-E_{1}, E_{2} \leq S
\end{array}\right.
$$

It follows from this payoff that $0 \leq \Pi_{T} \leq E_{2}-E_{1}$, hence $0 \leq C_{T}\left(E_{1}\right)-C_{T}\left(E_{2}\right) \leq E_{2}-E_{1}$, and so at any time $t \leq T$,

$$
0 \leq C_{t}\left(E_{1}\right)-C_{t}\left(E_{2}\right) \leq\left(E_{2}-E_{1}\right) \exp (-r(T-t)) \leq E_{2}-E_{1}
$$

2. (a) In this case $S_{0}=21, E=15, T=0.5$, and $r=0.08$.

The lower bound for the call option price is $S_{0}-E \exp (-r T)$, or $21-15 \exp (-0.08 \times 0.5)=6.588$.
(b) Investor could establish a zero initial investment $\Pi_{0}=0$ by purchasing one call for $£ 5$ (underpriced asset) and the bond for $£ 16$ and selling one share for $£ 21$.

At maturity $t=T$, the portfolio $\Pi=C+B-S$ has the value:

$$
\Pi_{T}=\max (S-E, 0)+16 \exp (0.08 \times 0.5)-S=\left\{\begin{array}{c}
16.653-S, S \leq 15 \\
1.653, S>15
\end{array}\right.
$$

It is clear that $\Pi_{T}>0$, therefore there exists an arbitrage opportunity.
3. By using Put-Call parity $P_{0}=C_{0}+E \exp (-r T)-S_{0}$, we find $P_{0} \geq E \exp (-r T)-S_{0}$.
4. Assume that $P_{0}>E \exp (-r T)$. Since the put option is overpriced, we sell it and invest the proceeds in risk-free bond. We set up a portfolio $\Pi=-P+B$. Of course $\Pi_{0}=0$ or $P_{0}=B_{0}$ (no initial investments). At maturity

$$
\Pi_{T}=-\max (E-S, 0)+P_{0} \exp (r T)=\left\{\begin{array}{c}
S-E+P_{0} \exp (r T), S \leq E \\
P_{0} \exp (r T), \quad S>E
\end{array}\right.
$$

Since $P_{0} \exp (r T)>E$, we conclude that $S-E+P_{0} \exp (r T)>0$ for $S \leq E$ and $\Pi_{T}>0$. Therefore there exists an arbitrage opportunity.

