Lecture 9

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 9

(1) Risk-Neutral Valuation
(2) Risk-Neutral World
(3) Two-Steps Binomial Tree

Risk-Neutral Valuation

Reminder from Lecture 8. Call option price:

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)
$$

where $p=\frac{e^{r T}-d}{u-d}$. No-Arbitrage Principle: $d<e^{r T}<u$.

Risk-Neutral Valuation

Reminder from Lecture 8. Call option price:

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right),
$$

where $p=\frac{e^{r T}-d}{u-d}$. No-Arbitrage Principle: $d<e^{r T}<u$.
In particular, if $d>e^{r T}$ then there exists an arbitrage opportunity. We could make money by taking out a bank loan $B_{0}=S_{0}$ at time $t=0$ and buying the stock for S_{0}.

Risk-Neutral Valuation

Reminder from Lecture 8. Call option price:

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right),
$$

where $p=\frac{e^{r T}-d}{u-d}$. No-Arbitrage Principle: $d<e^{r T}<u$.
In particular, if $d>e^{r T}$ then there exists an arbitrage opportunity. We could make money by taking out a bank loan $B_{0}=S_{0}$ at time $t=0$ and buying the stock for S_{0}.

We interpret the variable $0 \leq p \leq 1$ as the probability of an up movement in the stock price.

This formula is known as a risk-neutral valuation.

Risk-Neutral Valuation

Reminder from Lecture 8. Call option price:

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right),
$$

where $p=\frac{e^{r T}-d}{u-d}$. No-Arbitrage Principle: $d<e^{r T}<u$.
In particular, if $d>e^{r T}$ then there exists an arbitrage opportunity. We could make money by taking out a bank loan $B_{0}=S_{0}$ at time $t=0$ and buying the stock for S_{0}.

We interpret the variable $0 \leq p \leq 1$ as the probability of an up movement in the stock price.

This formula is known as a risk-neutral valuation.
The probability of up q or down movement $1-q$ in the stock price plays no role whatsoever! Why???

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]$

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d$

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d=\frac{e^{r T}-d}{u-d} S_{0} u+\left(1-\frac{e^{r T}-d}{u-d}\right) S_{0} d$

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d=\frac{e^{r T}-d}{u-d} S_{0} u+\left(1-\frac{e^{r T}-d}{u-d}\right) S_{0} d=S_{0} e^{r T}$.

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d=\frac{e^{r T}-d}{u-d} S_{0} u+\left(1-\frac{e^{r T}-d}{u-d}\right) S_{0} d=S_{0} e^{r T}$.
This shows that stock price grows on average at the risk-free interest rate r. Since the expected return is r, this is a risk-neutral world.

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d=\frac{e^{r T}-d}{u-d} S_{0} u+\left(1-\frac{e^{r T}-d}{u-d}\right) S_{0} d=S_{0} e^{r T}$.
This shows that stock price grows on average at the risk-free interest rate r. Since the expected return is r, this is a risk-neutral world.

In Real World: $\mathbb{E}\left[S_{T}\right]=S_{0} e^{\mu T}$. In Risk-Neutral World: $\mathbb{E}_{p}\left[S_{T}\right]=S_{0} e^{r T}$

Risk Neutral Valuation

Let us find the expected stock price at $t=T$:
$\mathbb{E}_{p}\left[S_{T}\right]=p S_{0} u+(1-p) S_{0} d=\frac{e^{r T}-d}{u-d} S_{0} u+\left(1-\frac{e^{r T}-d}{u-d}\right) S_{0} d=S_{0} e^{r T}$.
This shows that stock price grows on average at the risk-free interest rate r. Since the expected return is r, this is a risk-neutral world.

In Real World: $\mathbb{E}\left[S_{T}\right]=S_{0} e^{\mu T}$. In Risk-Neutral World: $\mathbb{E}_{p}\left[S_{T}\right]=S_{0} e^{r T}$
Risk-Neutral Valuation: $C_{0}=e^{-r T} \mathbb{E}_{p}\left[C_{T}\right]$
The option price is the expected payoff in a risk-neutral world, discounted at risk-free rate r.

Two-Step Binomial Tree

Now the stock price changes twice, each time by either a factor of $u>1$ or $d<1$. We assume that the length of the time step is Δt such that $T=2 \Delta t$. After two time steps the stock price will be $S_{0} u^{2}, S_{0} u d$ or $S_{0} d^{2}$.

Two-Step Binomial Tree

Now the stock price changes twice, each time by either a factor of $u>1$ or $d<1$. We assume that the length of the time step is Δt such that $T=2 \Delta t$. After two time steps the stock price will be $S_{0} u^{2}, S_{0} u d$ or $S_{0} d^{2}$.

The call option expires after two time steps producing payoffs $C_{u u}, C_{u d}$ and $C_{d d}$ respectively.

Option Price

The purpose is to calculate the option price C_{0} at the initial node of the tree.

Option Price

The purpose is to calculate the option price C_{0} at the initial node of the tree. We apply the risk-neutral valuation backward in time:
$C_{u}=e^{-r \Delta t}\left(p C_{u u}+(1-p) C_{u d}\right), \quad C_{d}=e^{-r \Delta t}\left(p C_{u d}+(1-p) C_{d d}\right)$.

Option Price

The purpose is to calculate the option price C_{0} at the initial node of the tree. We apply the risk-neutral valuation backward in time: $C_{u}=e^{-r \Delta t}\left(p C_{u u}+(1-p) C_{u d}\right), \quad C_{d}=e^{-r \Delta t}\left(p C_{u d}+(1-p) C_{d d}\right)$.

Current option price: $\quad C_{0}=e^{-r \Delta t}\left(p C_{u}+(1-p) C_{d}\right)$.

Option Price

Substitution gives

$$
C_{0}=e^{-2 r \Delta t}\left(p^{2} C_{u u}+2 p(1-p) C_{u d}+(1-p)^{2} C_{d d}\right)
$$

where $p^{2}, 2 p(1-p)$ and $(1-p)^{2}$ are the probabilities in a risk-neutral world that the upper, middle, and lower final nodes are reached.

Option Price

Substitution gives

$$
C_{0}=e^{-2 r \Delta t}\left(p^{2} C_{u u}+2 p(1-p) C_{u d}+(1-p)^{2} C_{d d}\right),
$$

where $p^{2}, 2 p(1-p)$ and $(1-p)^{2}$ are the probabilities in a risk-neutral world that the upper, middle, and lower final nodes are reached.

Finally, the current call option price is

$$
C_{0}=e^{-r T} \mathbb{E}_{p}\left[C_{T}\right], \quad T=2 \Delta t
$$

Option Price

Substitution gives

$$
C_{0}=e^{-2 r \Delta t}\left(p^{2} C_{u u}+2 p(1-p) C_{u d}+(1-p)^{2} C_{d d}\right)
$$

where $p^{2}, 2 p(1-p)$ and $(1-p)^{2}$ are the probabilities in a risk-neutral world that the upper, middle, and lower final nodes are reached.

Finally, the current call option price is

$$
C_{0}=e^{-r T} \mathbb{E}_{p}\left[C_{T}\right], \quad T=2 \Delta t
$$

The current put option price can be found in the same way:

$$
P_{0}=e^{-2 r \Delta t}\left(p^{2} P_{u u}+2 p(1-p) P_{u d}+(1-p)^{2} P_{d d}\right)
$$

or

$$
P_{0}=e^{-r T} \mathbb{E}_{p}\left[P_{T}\right]
$$

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

We have $u=1.2, d=0.8, \Delta t=0.25$, and $r=0.1$.

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

We have $u=1.2, d=0.8, \Delta t=0.25$, and $r=0.1$. Risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.1 \times 0.25}-0.8}{1.2-0.8}=0.5633$.

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

We have $u=1.2, d=0.8, \Delta t=0.25$, and $r=0.1$. Risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.1 \times 0.25}-0.8}{1.2-0.8}=0.5633$.

The possible stock prices at final nodes are $40 \times(1.2)^{2}=57.6$, $40 \times 1.2 \times 0.8=38.4$, and $40 \times(0.8)^{2}=25.6$.

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

We have $u=1.2, d=0.8, \Delta t=0.25$, and $r=0.1$. Risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.1 \times 0.25}-0.8}{1.2-0.8}=0.5633$.

The possible stock prices at final nodes are $40 \times(1.2)^{2}=57.6$, $40 \times 1.2 \times 0.8=38.4$, and $40 \times(0.8)^{2}=25.6$.

We obtain $P_{u u}=0, P_{u d}=0$ and $P_{d d}=32-25.6=6.4$.

Two-Step Binomial Tree Example

Consider six months European put with a strike price of $£ 32$ on a stock with current price $£ 40$. There are two time steps and in each time step the stock price either moves up by 20% or moves down by 20%. Risk-free interest rate is 10%. Find the current option price.

We have $u=1.2, d=0.8, \Delta t=0.25$, and $r=0.1$. Risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.1 \times 0.25}-0.8}{1.2-0.8}=0.5633$.

The possible stock prices at final nodes are $40 \times(1.2)^{2}=57.6$, $40 \times 1.2 \times 0.8=38.4$, and $40 \times(0.8)^{2}=25.6$.

We obtain $P_{u u}=0, P_{u d}=0$ and $P_{d d}=32-25.6=6.4$.
Thus the value of put option is
$P_{0}=e^{-2 \times 0.1 \times 0.25} \times\left(0+0+(1-0.5633)^{2} \times 6.4\right)=1.1610$.

