Lecture 8

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 8

- One-Step Binomial Model for Option Price
- 2 Risk-Neutral Valuation
- Second Examples

Initial stock price is S_0 . The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d (u > 1; d < 1).

Initial stock price is S_0 . The stock price can either move up from S_0 to $S_0 u$ or down from S_0 to $S_0 d$ (u > 1; d < 1).

At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

Initial stock price is S_0 . The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d (u > 1; d < 1).

At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

Initial stock price is S_0 . The stock price can either move up from S_0 to S_0u or down from S_0 to S_0d (u > 1; d < 1).

At time T, let the option price be C_u if the stock price moves up, and C_d if the stock price moves down.

The purpose is to find the current price C_0 of a European call option.

$$\Pi = \Delta S - C$$

$$\Pi = \Delta S - C$$

• Let us find the number of shares Δ that makes the portfolio Π riskless.

$$\Pi = \Delta S - C$$

• Let us find the number of shares Δ that makes the portfolio Π riskless.

The value of portfolio when stock moves up is

$$\Delta S_0 u - C_u$$

The value of portfolio when stock moves down is

$$\Delta S_0 d - C_d$$

$$\Pi = \Delta S - C$$

• Let us find the number of shares Δ that makes the portfolio Π riskless.

The value of portfolio when stock moves up is

$$\Delta S_0 u - C_u$$

The value of portfolio when stock moves down is

$$\Delta S_0 d - C_d$$

If portfolio $\Pi = \Delta S - C$ is risk-free, then $\Delta S_0 u - C_u = \Delta S_0 d - C_d$

The number of shares is
$$\Delta = rac{C_u - C_d}{S_0(u-d)}$$
.

The number of shares is $\Delta = \frac{C_u - C_d}{S_0(u-d)}$.

Because portfolio is riskless for this Δ , the current value Π_0 can be found by discounting: $\Pi_0 = (\Delta S_0 u - C_u) e^{-rT}$, where r is the interest rate.

The number of shares is $\Delta = \frac{C_u - C_d}{S_0(u-d)}$.

Because portfolio is riskless for this Δ , the current value Π_0 can be found by discounting: $\Pi_0 = (\Delta S_0 u - C_u) e^{-rT}$, where r is the interest rate.

On the other hand, the cost of setting up the portfolio is $\Pi_0 = \Delta S_0 - C_0$. Therefore $\Delta S_0 - C_0 = (\Delta S_0 u - C_u) e^{-rT}$.

The number of shares is $\Delta = \frac{C_u - C_d}{S_0(u-d)}$.

Because portfolio is riskless for this Δ , the current value Π_0 can be found by discounting: $\Pi_0 = (\Delta S_0 u - C_u) e^{-rT}$, where *r* is the interest rate.

On the other hand, the cost of setting up the portfolio is $\Pi_0 = \Delta S_0 - C_0$. Therefore $\Delta S_0 - C_0 = (\Delta S_0 u - C_u) e^{-rT}$.

Finally, the current call option price is

$$C_0 = \Delta S_0 - (\Delta S_0 u - C_u) e^{-rT},$$

where $\Delta = \frac{C_u - C_d}{S_0(u-d)}$ (No-Arbitrage Argument).

Alternatively

$$C_0 = e^{-rT} \left(pC_u + (1-p)C_d \right),$$

where

$$p=\frac{e^{rT}-d}{u-d}.$$

(Risk-Neutral Valuation)

Alternatively

$$C_0 = e^{-rT} \left(pC_u + (1-p)C_d \right),$$

where

$$p=rac{e^{rT}-d}{u-d}.$$

(Risk-Neutral Valuation)

It is natural to interpret the variable $0 \le p \le 1$ as the probability of an up movement in the stock price, and the variable 1-p as the probability of a down movement.

Alternatively

$$C_0 = e^{-rT} \left(pC_u + (1-p)C_d \right),$$

where

$$p=rac{e^{rT}-d}{u-d}.$$

(Risk-Neutral Valuation)

It is natural to interpret the variable $0 \le p \le 1$ as the probability of an up movement in the stock price, and the variable 1 - p as the probability of a down movement.

Fair price of a call option C_0 is equal to the expected value of its future payoff discounted at the risk-free interest rate.

Alternatively

$$C_0 = e^{-rT} \left(pC_u + (1-p)C_d \right),$$

where

$$v=\frac{e^{rT}-d}{u-d}.$$

(Risk-Neutral Valuation)

It is natural to interpret the variable $0 \le p \le 1$ as the probability of an up movement in the stock price, and the variable 1-p as the probability of a down movement.

Fair price of a call option C_0 is equal to the expected value of its future payoff discounted at the risk-free interest rate. For a put option P_0 we have the same result

$$P_0 = e^{-rT} (pP_u + (1-p)P_d).$$

A stock price is currently \$40. At the end of three months it will be either \$44 or \$36. The risk-free interest rate is 12%.

What is the value of three-month European call option with a strike price of \$42? Use *no-arbitrage* arguments and *risk-neutral valuation*.

A stock price is currently \$40. At the end of three months it will be either \$44 or \$36. The risk-free interest rate is 12%.

What is the value of three-month European call option with a strike price of \$42? Use *no-arbitrage* arguments and *risk-neutral valuation*.

In this case $S_0 = 40$, u = 1.1, d = 0.9, r = 0.12, T = 0.25, $C_u = 2$, $C_d = 0$.

A stock price is currently \$40. At the end of three months it will be either \$44 or \$36. The risk-free interest rate is 12%.

What is the value of three-month European call option with a strike price of \$42? Use *no-arbitrage* arguments and *risk-neutral valuation*.

In this case $S_0 = 40, u = 1.1, d = 0.9, r = 0.12, T = 0.25, C_u = 2, C_d = 0.$

No-arbitrage arguments: the number of shares

$$\Delta = \frac{C_u - C_d}{S_0 u - S_0 d} = \frac{2 - 0}{40 \times (1.1 - 0.9)} = 0.25$$

A stock price is currently \$40. At the end of three months it will be either \$44 or \$36. The risk-free interest rate is 12%.

What is the value of three-month European call option with a strike price of \$42? Use *no-arbitrage* arguments and *risk-neutral valuation*.

In this case $S_0 = 40, u = 1.1, d = 0.9, r = 0.12, T = 0.25, C_u = 2, C_d = 0.$

No-arbitrage arguments: the number of shares

$$\Delta = \frac{C_u - C_d}{S_0 u - S_0 d} = \frac{2 - 0}{40 \times (1.1 - 0.9)} = 0.25$$

and the value of call option

$$C_0 = S_0 \Delta - (S_0 u \Delta - C_u) e^{-rt} =$$

40 × 0.25 - (40 × 1.1 × 0.25 - 2) × $e^{-0.12 \times 0.25} = 1.266$

Risk-neutral valuation: one can find the probability p

$$p = \frac{e^{rT} - d}{u - d} = \frac{e^{0.12 \times 0.25} - 0.9}{1.1 - 0.9} = 0.6523$$

Risk-neutral valuation: one can find the probability p

$$p = \frac{e^{rT} - d}{u - d} = \frac{e^{0.12 \times 0.25} - 0.9}{1.1 - 0.9} = 0.6523$$

and the value of call option

$$C_0 = e^{-rT} \left[pC_u + (1-p)C_d \right] = e^{-0.12 \times 0.25} \left[0.6523 \times 2 + 0 \right] = 1.266$$