Lecture 8

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 8

(1) One-Step Binomial Model for Option Price
(2) Risk-Neutral Valuation
(3) Examples

One-Step Binomial Model

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d(u>1 ; d<1)$.

One-Step Binomial Model

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d(u>1 ; d<1)$.

At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

One-Step Binomial Model

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d(u>1 ; d<1)$.

At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

One-Step Binomial Model

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d(u>1 ; d<1)$.

At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

The purpose is to find the current price C_{0} of a European call option.

Riskless Portfolio

Now, we set up a portfolio consisting of a long position in Δ shares and short position in one call

$$
\Pi=\Delta S-C
$$

Riskless Portfolio

Now, we set up a portfolio consisting of a long position in Δ shares and short position in one call

$$
\Pi=\Delta S-C
$$

- Let us find the number of shares Δ that makes the portfolio Π riskless.

Riskless Portfolio

Now, we set up a portfolio consisting of a long position in Δ shares and short position in one call

$$
\Pi=\Delta S-C
$$

- Let us find the number of shares Δ that makes the portfolio Π riskless.

The value of portfolio when stock moves up is

$$
\Delta S_{0} u-C_{u}
$$

The value of portfolio when stock moves down is

$$
\Delta S_{0} d-C_{d}
$$

Riskless Portfolio

Now, we set up a portfolio consisting of a long position in Δ shares and short position in one call

$$
\Pi=\Delta S-C
$$

- Let us find the number of shares Δ that makes the portfolio Π riskless.

The value of portfolio when stock moves up is

$$
\Delta S_{0} u-C_{u}
$$

The value of portfolio when stock moves down is

$$
\Delta S_{0} d-C_{d}
$$

If portfolio $\Pi=\Delta S-C$ is risk-free, then $\Delta S_{0} u-C_{u}=\Delta S_{0} d-C_{d}$

No-Arbitrage Argument

The number of shares is $\Delta=\frac{C_{u}-C_{d}}{S_{0}(u-d)}$.

No-Arbitrage Argument

The number of shares is $\Delta=\frac{C_{u}-C_{d}}{S_{0}(u-d)}$.
Because portfolio is riskless for this Δ, the current value Π_{0} can be found by discounting: $\Pi_{0}=\left(\Delta S_{0} u-C_{u}\right) e^{-r T}$, where r is the interest rate.

No-Arbitrage Argument

The number of shares is $\Delta=\frac{C_{u}-C_{d}}{S_{0}(u-d)}$.
Because portfolio is riskless for this Δ, the current value Π_{0} can be found by discounting: $\Pi_{0}=\left(\Delta S_{0} u-C_{u}\right) e^{-r T}$, where r is the interest rate.

On the other hand, the cost of setting up the portfolio is $\Pi_{0}=\Delta S_{0}-C_{0}$. Therefore $\Delta S_{0}-C_{0}=\left(\Delta S_{0} u-C_{u}\right) e^{-r T}$.

No-Arbitrage Argument

The number of shares is $\Delta=\frac{C_{u}-C_{d}}{S_{0}(u-d)}$.
Because portfolio is riskless for this Δ, the current value Π_{0} can be found by discounting: $\Pi_{0}=\left(\Delta S_{0} u-C_{u}\right) e^{-r T}$, where r is the interest rate.

On the other hand, the cost of setting up the portfolio is $\Pi_{0}=\Delta S_{0}-C_{0}$. Therefore $\Delta S_{0}-C_{0}=\left(\Delta S_{0} u-C_{u}\right) e^{-r T}$.

Finally, the current call option price is

$$
C_{0}=\Delta S_{0}-\left(\Delta S_{0} u-C_{u}\right) e^{-r T}
$$

where $\Delta=\frac{C_{u}-C_{d}}{S_{0}(u-d)}$ (No-Arbitrage Argument).

Risk-Neutral Valuation

Alternatively

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)
$$

where

$$
p=\frac{e^{r T}-d}{u-d} .
$$

(Risk-Neutral Valuation)

Risk-Neutral Valuation

Alternatively

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)
$$

where

$$
p=\frac{e^{r T}-d}{u-d}
$$

(Risk-Neutral Valuation)
It is natural to interpret the variable $0 \leq p \leq 1$ as the probability of an up movement in the stock price, and the variable $1-p$ as the probability of a down movement.

Risk-Neutral Valuation

Alternatively

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)
$$

where

$$
p=\frac{e^{r T}-d}{u-d}
$$

(Risk-Neutral Valuation)
It is natural to interpret the variable $0 \leq p \leq 1$ as the probability of an up movement in the stock price, and the variable $1-p$ as the probability of a down movement.

Fair price of a call option C_{0} is equal to the expected value of its future payoff discounted at the risk-free interest rate.

Risk-Neutral Valuation

Alternatively

$$
C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)
$$

where

$$
p=\frac{e^{r T}-d}{u-d}
$$

(Risk-Neutral Valuation)
It is natural to interpret the variable $0 \leq p \leq 1$ as the probability of an up movement in the stock price, and the variable $1-p$ as the probability of a down movement.

Fair price of a call option C_{0} is equal to the expected value of its future payoff discounted at the risk-free interest rate. For a put option P_{0} we have the same result

$$
P_{0}=e^{-r T}\left(p P_{u}+(1-p) P_{d}\right)
$$

Example

A stock price is currently $\$ 40$. At the end of three months it will be either $\$ 44$ or $\$ 36$. The risk-free interest rate is 12%.
What is the value of three-month European call option with a strike price of $\$ 42$? Use no-arbitrage arguments and risk-neutral valuation.

Example

A stock price is currently $\$ 40$. At the end of three months it will be either $\$ 44$ or $\$ 36$. The risk-free interest rate is 12%.
What is the value of three-month European call option with a strike price of $\$ 42$? Use no-arbitrage arguments and risk-neutral valuation.

In this case $S_{0}=40, u=1.1, d=0.9, r=0.12, T=0.25, C_{u}=2$,
$C_{d}=0$.

Example

A stock price is currently $\$ 40$. At the end of three months it will be either $\$ 44$ or $\$ 36$. The risk-free interest rate is 12%.
What is the value of three-month European call option with a strike price of $\$ 42$? Use no-arbitrage arguments and risk-neutral valuation.

In this case $S_{0}=40, u=1.1, d=0.9, r=0.12, T=0.25, C_{u}=2$,
$C_{d}=0$.
No-arbitrage arguments: the number of shares

$$
\Delta=\frac{C_{u}-C_{d}}{S_{0} u-S_{0} d}=\frac{2-0}{40 \times(1.1-0.9)}=0.25
$$

Example

A stock price is currently $\$ 40$. At the end of three months it will be either $\$ 44$ or $\$ 36$. The risk-free interest rate is 12%.
What is the value of three-month European call option with a strike price of $\$ 42$? Use no-arbitrage arguments and risk-neutral valuation.

In this case $S_{0}=40, u=1.1, d=0.9, r=0.12, T=0.25, C_{u}=2$,
$C_{d}=0$.
No-arbitrage arguments: the number of shares

$$
\Delta=\frac{C_{u}-C_{d}}{S_{0} u-S_{0} d}=\frac{2-0}{40 \times(1.1-0.9)}=0.25
$$

and the value of call option

$$
\begin{gathered}
C_{0}=S_{0} \Delta-\left(S_{0} u \Delta-C_{u}\right) e^{-r T}= \\
40 \times 0.25-(40 \times 1.1 \times 0.25-2) \times e^{-0.12 \times 0.25}=1.266
\end{gathered}
$$

Example

Risk-neutral valuation: one can find the probability p

$$
p=\frac{e^{r T}-d}{u-d}=\frac{e^{0.12 \times 0.25}-0.9}{1.1-0.9}=0.6523
$$

Example

Risk-neutral valuation: one can find the probability p

$$
p=\frac{e^{r T}-d}{u-d}=\frac{e^{0.12 \times 0.25}-0.9}{1.1-0.9}=0.6523
$$

and the value of call option

$$
C_{0}=e^{-r T}\left[p C_{u}+(1-p) C_{d}\right]=e^{-0.12 \times 0.25}[0.6523 \times 2+0]=1.266
$$

