Lecture 7

Sergei Fedotov

20912 - Introduction to Financial Mathematics

< □ > < ---->

- ∢ ∃ →

Lecture 7

- Upper and Lower Bounds on Put Options
- Proof of Put-Call Parity by No-Arbitrage Principle
- Second Example on Arbitrage Opportunity

Reminder from lecture 6.

• Arbitrage opportunity arises when a zero initial investment $\Pi_0 = 0$ is identified that guarantees a non-negative payoff in the future such that $\Pi_T > 0$ with non-zero probability.

Reminder from lecture 6.

- Arbitrage opportunity arises when a zero initial investment $\Pi_0 = 0$ is identified that guarantees a non-negative payoff in the future such that $\Pi_T > 0$ with non-zero probability.
- Put-Call Parity at time t = 0: $S_0 + P_0 C_0 = Ee^{-rT}$.

Reminder from lecture 6.

- Arbitrage opportunity arises when a zero initial investment $\Pi_0 = 0$ is identified that guarantees a non-negative payoff in the future such that $\Pi_T > 0$ with non-zero probability.
- Put-Call Parity at time t = 0: $S_0 + P_0 C_0 = Ee^{-rT}$.

Upper and Lower Bounds on Put Option (exercise sheet 3):

$$Ee^{-rT} - S_0 \le P_0 \le Ee^{-rT}$$

Let us illustrate these bounds geometrically.

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

We set up the portfolio $\Pi = -P - S + C + B$. At time t = 0 we

• sell one put option for P_0 (write the put option)

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

We set up the portfolio $\Pi = -P - S + C + B$. At time t = 0 we

- sell one put option for P_0 (write the put option)
- sell one share for S_0 (short position)

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

We set up the portfolio $\Pi = -P - S + C + B$. At time t = 0 we

- sell one put option for P_0 (write the put option)
- sell one share for S_0 (short position)
- buy one call option for C_0

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

We set up the portfolio $\Pi = -P - S + C + B$. At time t = 0 we

- sell one put option for P_0 (write the put option)
- sell one share for S_0 (short position)
- buy one call option for C_0
- buy one bond for $B_0 = P_0 + S_0 C_0 > Ee^{-rT}$

イロト イポト イヨト イヨト 二日

The value of European put option can be found as

$$P_0 = C_0 - S_0 + E e^{-rT}.$$

Let us prove this relation by using No-Arbitrage Principle.

Assume that $P_0 > C_0 - S_0 + Ee^{-rT}$. Then one can make a riskless profit (arbitrage opportunity).

We set up the portfolio $\Pi = -P - S + C + B$. At time t = 0 we

- sell one put option for P_0 (write the put option)
- sell one share for S_0 (short position)
- buy one call option for C_0
- buy one bond for $B_0 = P_0 + S_0 C_0 > Ee^{-rT}$

The balance of all these transactions is zero, that is, $\Pi_0 = 0$, $\Pi_0 = 0$

At maturity t = T the portfolio $\Pi = -P - S + C + B$ has the value

$$\Pi_{T} = \begin{cases} -(E-S) - S + B_{0}e^{rT}, & S \le E, \\ -S + (S-E) + B_{0}e^{rT}, & S > E, \end{cases} = -E + B_{0}e^{rT}$$

< 3 > < 3 >

At maturity t = T the portfolio $\Pi = -P - S + C + B$ has the value

$$\Pi_{T} = \begin{cases} -(E-S) - S + B_{0}e^{rT}, & S \le E, \\ -S + (S-E) + B_{0}e^{rT}, & S > E, \end{cases} = -E + B_{0}e^{rT}$$

Since $B_0 > Ee^{-rT}$, we conclude $\Pi_T > 0$. and $\Pi_0 = 0$.

This is an arbitrage opportunity.

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

Image: Image:

4 3 4 3 4

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

At time t = 0 we

• buy one put option for P_0

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

- At time t = 0 we
- buy one put option for P_0
- buy one share for S_0 (long position)

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

- At time t = 0 we
- buy one put option for P_0
- buy one share for S_0 (long position)
- sell one call option for C_0 (write the call option)

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

- At time t = 0 we
- buy one put option for P_0
- buy one share for S_0 (long position)
- sell one call option for C_0 (write the call option)
- borrow $B_0 = P_0 + S_0 C_0 < Ee^{-rT}$

Now we assume that $P_0 < C_0 - S_0 + Ee^{-rT}$.

We set up the portfolio $\Pi = P + S - C - B$.

- At time t = 0 we
- buy one put option for P_0
- buy one share for S_0 (long position)
- sell one call option for C_0 (write the call option)
- borrow $B_0 = P_0 + S_0 C_0 < Ee^{-rT}$

The balance of all these transactions is zero, that is, $\Pi_0 = 0$

At maturity t = T we have $\Pi_T = E - B_0 e^{rT}$. Since $B_0 < Ee^{-rT}$, we conclude $\Pi_T > 0$.

This is an arbitrage opportunity!!!

Three months European call and put options with the exercise price $\pounds 12$ are trading at $\pounds 3$ and $\pounds 6$ respectively.

The stock price is $\pounds 8$ and interest rate is 5%. Show that there exists arbitrage opportunity.

Three months European call and put options with the exercise price $\pounds 12$ are trading at $\pounds 3$ and $\pounds 6$ respectively. The stock price is $\pounds 8$ and interest rate is 5%. Show that there exists arbitrage opportunity.

Solution:

The Put-Call Parity $P_0 = C_0 - S_0 + Ee^{-rT}$ is violated, because $6 < 3 - 8 + 12e^{-0.05 \times \frac{1}{4}} = 6.851$

Three months European call and put options with the exercise price $\pounds 12$ are trading at $\pounds 3$ and $\pounds 6$ respectively. The stock price is $\pounds 8$ and interest rate is 5%. Show that there exists

arbitrage opportunity.

Solution:

The Put-Call Parity $P_0 = C_0 - S_0 + Ee^{-rT}$ is violated, because $6 < 3 - 8 + 12e^{-0.05 \times \frac{1}{4}} = 6.851$

To get arbitrage profit we

- \bullet buy a put option for $\pounds 6$
- \bullet sell a call option for $\pounds 3$

Three months European call and put options with the exercise price $\pounds 12$ are trading at $\pounds 3$ and $\pounds 6$ respectively. The stock price is $\pounds 8$ and interest rate is 5%. Show that there exists

arbitrage opportunity.

Solution:

The Put-Call Parity $P_0 = C_0 - S_0 + Ee^{-rT}$ is violated, because $6 < 3 - 8 + 12e^{-0.05 \times \frac{1}{4}} = 6.851$

To get arbitrage profit we

- \bullet buy a put option for $\pounds 6$
- \bullet sell a call option for $\pounds 3$
- \bullet buy a share for $\pounds 8$

Three months European call and put options with the exercise price $\pounds 12$ are trading at $\pounds 3$ and $\pounds 6$ respectively. The stock price is $\pounds 8$ and interest rate is 5%. Show that there exists

arbitrage opportunity.

Solution:

The Put-Call Parity $P_0 = C_0 - S_0 + Ee^{-rT}$ is violated, because $6 < 3 - 8 + 12e^{-0.05 \times \frac{1}{4}} = 6.851$

To get arbitrage profit we

- \bullet buy a put option for $\pounds 6$
- \bullet sell a call option for $\pounds 3$
- \bullet buy a share for $\pounds 8$
- \bullet borrow $\pounds 11$ at the interest rate 5%.

The balance is zero!!

The value of the portfolio $\Pi = P + S - C - B$ at maturity $T = \frac{1}{4}$ is $\Pi_T = E - B_0 e^{rT} = 12 - 11e^{0.05 \times \frac{1}{4}} \approx 0.862.$

The value of the portfolio $\Pi = P + S - C - B$ at maturity $T = \frac{1}{4}$ is $\Pi_T = E - B_0 e^{rT} = 12 - 11e^{0.05 \times \frac{1}{4}} \approx 0.862.$

Combination P + S - C gives us £12. We repay the loan $\pm 11e^{0.05 \times \frac{1}{4}}$.

The value of the portfolio $\Pi = P + S - C - B$ at maturity $T = \frac{1}{4}$ is $\Pi_T = E - B_0 e^{rT} = 12 - 11e^{0.05 \times \frac{1}{4}} \approx 0.862.$

Combination P + S - C gives us £12. We repay the loan $\pm 11e^{0.05 \times \frac{1}{4}}$.

The balance $12 - 11e^{0.05 \times \frac{1}{4}}$ is an arbitrage profit £0.862.