Lecture 2

Sergei Fedotov

20912 - Introduction to Financial Mathematics

- Properties of Wiener Process
- Approximation for Stock Price Equation
- Itô's Lemma

2010

2 / 6

Wiener process

The probability density function for W(t) is

$$p(y,t) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{y^2}{2t}\right)$$

Wiener process

The probability density function for W(t) is

$$p(y,t) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{y^2}{2t}\right)$$

and $\mathbb{P}(a \leq W(t) \leq b) = \int_a^b p(y, t) dy$

• Simulations of a Wiener process:

• The increment $\Delta W = W(t + \Delta t) - W(t)$ can be written as $\Delta W = X (\Delta t)^{\frac{1}{2}}$, where X is a random variable with normal distribution with zero mean and unit variance: $X \sim N(0, 1)$

Approximation of SDE for small Δt

- The increment $\Delta W = W(t + \Delta t) W(t)$ can be written as $\Delta W = X (\Delta t)^{\frac{1}{2}}$, where X is a random variable with normal distribution with zero mean and unit variance: $X \sim N(0, 1)$
- $\mathbb{E}\Delta W = 0$ and $\mathbb{E}(\Delta W)^2 = \Delta t$.

- The increment $\Delta W = W(t + \Delta t) W(t)$ can be written as $\Delta W = X (\Delta t)^{\frac{1}{2}}$, where X is a random variable with normal distribution with zero mean and unit variance: $X \sim N(0, 1)$
- $\mathbb{E}\Delta W = 0$ and $\mathbb{E}(\Delta W)^2 = \Delta t$. Recall: equation for the stock price is

$$dS = \mu S dt + \sigma S dW,$$

then

$$\Delta S \approx \mu S \Delta t + \sigma S X \left(\Delta t \right)^{\frac{1}{2}}$$

• The increment $\Delta W = W(t + \Delta t) - W(t)$ can be written as $\Delta W = X (\Delta t)^{\frac{1}{2}}$, where X is a random variable with normal distribution with zero mean and unit variance: $X \sim N(0, 1)$

• $\mathbb{E}\Delta W = 0$ and $\mathbb{E}(\Delta W)^2 = \Delta t$. Recall: equation for the stock price is

$$dS = \mu S dt + \sigma S dW,$$

then

$$\Delta S pprox \mu S \Delta t + \sigma S X \left(\Delta t
ight)^{rac{1}{2}}$$

It means $\Delta S \sim N\left(\mu S \Delta t, \sigma^2 S^2 \Delta t\right)$

Example 1. Consider a stock that has volatility 30% and provides expected return of 15% p.a. Find the increase in stock price for one week if the initial stock price is 100.

Example 1. Consider a stock that has volatility 30% and provides expected return of 15% p.a. Find the increase in stock price for one week if the initial stock price is 100.

Answer: $\Delta S = 0.288 + 4.155X$

Note: 4.155 is the standard deviation

Example 1. Consider a stock that has volatility 30% and provides expected return of 15% p.a. Find the increase in stock price for one week if the initial stock price is 100.

Answer: $\Delta S = 0.288 + 4.155X$

Note: 4.155 is the standard deviation

Example 2. Show that the return $\frac{\Delta S}{S}$ is normally distributed with mean $\mu\Delta t$ and variance $\sigma^2\Delta t$

We assume that f(S, t) is a smooth function of S and t.

Find **df** if $dS = \mu S dt + \sigma S dW$

We assume that f(S, t) is a smooth function of S and t.

Find **df** if $dS = \mu S dt + \sigma S dW$

• Volatility $\sigma = 0$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS = \left(\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial S}\right)dt$$

We assume that f(S, t) is a smooth function of S and t.

Find df if $dS = \mu S dt + \sigma S dW$

• Volatility $\sigma = 0$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS = \left(\frac{\partial f}{\partial t} + \mu S\frac{\partial f}{\partial S}\right)dt$$

• Volatility $\sigma \neq \mathbf{0}$

We assume that f(S, t) is a smooth function of S and t.

Find df if $dS = \mu S dt + \sigma S dW$

• Volatility $\sigma = 0$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS = \left(\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial S}\right)dt$$

• Volatility $\sigma \neq 0$

Itô's Lemma:

$$df = \left(\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2}\right) dt + \sigma S \frac{\partial f}{\partial S} dW$$

We assume that f(S, t) is a smooth function of S and t.

Find df if $dS = \mu S dt + \sigma S dW$

• Volatility $\sigma = 0$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS = \left(\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial S}\right)dt$$

• Volatility $\sigma \neq 0$

Itô's Lemma:

$$df = \left(\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial 5} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial 5^2}\right) dt + \sigma S \frac{\partial f}{\partial 5} dW$$

Example. Find the SDE satisfied by $f = S^2$.