Lecture 18

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 18

(1) Measure of Future Values of Interest Rate
(2) Term Structure of Interest Rate (Yield Curve)

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Let us differentiate $V(t, T)$ with respect to T :

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Let us differentiate $V(t, T)$ with respect to T :
$\frac{\partial V}{\partial T}=F \exp \left(-\int_{t}^{T} r(s) d s\right)(-r(T))$

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Let us differentiate $V(t, T)$ with respect to T :
$\frac{\partial V}{\partial T}=F \exp \left(-\int_{t}^{T} r(s) d s\right)(-r(T))=-V(t, T) r(T)$,

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Let us differentiate $V(t, T)$ with respect to T :
$\frac{\partial V}{\partial T}=F \exp \left(-\int_{t}^{T} r(s) d s\right)(-r(T))=-V(t, T) r(T)$,
since $\frac{\partial}{\partial T} \int_{t}^{T} r(s) d s=r(T)$.

Measure of Future Value of Interest Rate

Let us consider the case when the dividend payment $K(t)=0$. Recall that the solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ is

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us introduce the notation $V(t, T)$ for the bond prices. These prices are quoted at time t for different values of T.

Let us differentiate $V(t, T)$ with respect to T :
$\frac{\partial V}{\partial T}=F \exp \left(-\int_{t}^{T} r(s) d s\right)(-r(T))=-V(t, T) r(T)$,
since $\frac{\partial}{\partial T} \int_{t}^{T} r(s) d s=r(T)$. Therefore,

$$
r(T)=-\frac{1}{V(t, T)} \frac{\partial V}{\partial T}
$$

This is an interest rate at future dates (forward rate).

Term Structure of Interest Rate (Yield Curve)

We define

$$
Y(t, T)=-\frac{\ln (V(t, T))-\ln V(T, T)}{T-t}
$$

as a measure of the future values of interest rate, where $V(t, T)$ is taken from financial data.

Term Structure of Interest Rate (Yield Curve)

We define

$$
Y(t, T)=-\frac{\ln (V(t, T))-\ln V(T, T)}{T-t}
$$

as a measure of the future values of interest rate, where $V(t, T)$ is taken from financial data.
$Y(t, T)=-\frac{\ln \left(F \exp \left(-\int_{t}^{T} r(s) d s\right)\right)-\ln F}{T-t}=\frac{1}{T-t} \int_{t}^{T} r(s) d s$

Term Structure of Interest Rate (Yield Curve)

We define

$$
Y(t, T)=-\frac{\ln (V(t, T))-\ln V(T, T)}{T-t}
$$

as a measure of the future values of interest rate, where $V(t, T)$ is taken from financial data.
$Y(t, T)=-\frac{\ln \left(F \exp \left(-\int_{t}^{T} r(s) d s\right)\right)-\ln F}{T-t}=\frac{1}{T-t} \int_{t}^{T} r(s) d s$ is the average value of the interest rate $r(t)$ in the time interval $[t, T]$.

Term Structure of Interest Rate (Yield Curve)

We define

$$
Y(t, T)=-\frac{\ln (V(t, T))-\ln V(T, T)}{T-t}
$$

as a measure of the future values of interest rate, where $V(t, T)$ is taken from financial data.
$Y(t, T)=-\frac{\ln \left(F \exp \left(-\int_{t}^{T} r(s) d s\right)\right)-\ln F}{T-t}=\frac{1}{T-t} \int_{t}^{T} r(s) d s$ is the average value of the interest rate $r(t)$ in the time interval $[t, T]$. Bond price $V(t, T)$ can be written as $V(t, T)=F e^{-Y(t, T)(T-t)}$.

Term Structure of Interest Rate (Yield Curve)

We define

$$
Y(t, T)=-\frac{\ln (V(t, T))-\ln V(T, T)}{T-t}
$$

as a measure of the future values of interest rate, where $V(t, T)$ is taken from financial data.
$Y(t, T)=-\frac{\ln \left(F \exp \left(-\int_{t}^{T} r(s) d s\right)\right)-\ln F}{T-t}=\frac{1}{T-t} \int_{t}^{T} r(s) d s$ is the average value of the interest rate $r(t)$ in the time interval $[t, T]$.

Bond price $V(t, T)$ can be written as $V(t, T)=F e^{-Y(t, T)(T-t)}$.
Term structure of interest rate (yield curve):

$$
Y(0, T)=-\frac{\ln (V(0, T))-\ln V(T, T)}{T}=\frac{1}{T} \int_{0}^{T} r(s) d s
$$

is the average value of interest rate in the future.

Example

Assume that the instantaneous interest rate $r(t)$ is

$$
r(t)=r_{0}+a t
$$

where r_{0} and a are constants.

Example

Assume that the instantaneous interest rate $r(t)$ is

$$
r(t)=r_{0}+a t
$$

where r_{0} and a are constants.
Bond price:

$$
V(t, T)=F e^{-\int_{t}^{T} r(s) d s}=F e^{-\int_{t}^{T}\left(r_{0}+a s\right) d s}
$$

Example

Assume that the instantaneous interest rate $r(t)$ is

$$
r(t)=r_{0}+a t
$$

where r_{0} and a are constants.
Bond price:

$$
V(t, T)=F e^{-\int_{t}^{T} r(s) d s}=F e^{-\int_{t}^{T}\left(r_{0}+a s\right) d s}=F e^{-r_{0}(T-t)-\frac{a}{2}\left(T^{2}-t^{2}\right)} .
$$

Example

Assume that the instantaneous interest rate $r(t)$ is

$$
r(t)=r_{0}+a t
$$

where r_{0} and a are constants.
Bond price:

$$
V(t, T)=F e^{-\int_{t}^{T} r(s) d s}=F e^{-\int_{t}^{T}\left(r_{0}+a s\right) d s}=F e^{-r_{0}(T-t)-\frac{a}{2}\left(T^{2}-t^{2}\right)} .
$$

Term structure of interest rate:

$$
Y(0, T)=\frac{1}{T} \int_{0}^{T} r(s) d s
$$

Example

Assume that the instantaneous interest rate $r(t)$ is

$$
r(t)=r_{0}+a t
$$

where r_{0} and a are constants.
Bond price:

$$
V(t, T)=F e^{-\int_{t}^{T} r(s) d s}=F e^{-\int_{t}^{T}\left(r_{0}+a s\right) d s}=F e^{-r_{0}(T-t)-\frac{a}{2}\left(T^{2}-t^{2}\right)} .
$$

Term structure of interest rate:

$$
Y(0, T)=\frac{1}{T} \int_{0}^{T} r(s) d s=r_{0}+\frac{a T}{2}
$$

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?
Let us introduce the probability of default p during one year $T=1$. Then

$$
V(0) e^{r}=V(0)(1-p) e^{(r+s)}+p \times 0
$$

The investor has no preference between two investments.

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?
Let us introduce the probability of default p during one year $T=1$. Then

$$
V(0) e^{r}=V(0)(1-p) e^{(r+s)}+p \times 0
$$

The investor has no preference between two investments.
The positive parameter s is called the spread w.r.t to interest rate r.

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?
Let us introduce the probability of default p during one year $T=1$. Then

$$
V(0) e^{r}=V(0)(1-p) e^{(r+s)}+p \times 0
$$

The investor has no preference between two investments.
The positive parameter s is called the spread w.r.t to interest rate r.
Let us find it.

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?
Let us introduce the probability of default p during one year $T=1$. Then

$$
V(0) e^{r}=V(0)(1-p) e^{(r+s)}+p \times 0
$$

The investor has no preference between two investments.
The positive parameter s is called the spread w.r.t to interest rate r.
Let us find it.

$$
s=-\ln (1-p)=
$$

Risk of Default

There exists a risk of default of bond $V(t)$ when the principal are not paid to the lender as promised by borrower.

How to take this into account?
Let us introduce the probability of default p during one year $T=1$. Then

$$
V(0) e^{r}=V(0)(1-p) e^{(r+s)}+p \times 0
$$

The investor has no preference between two investments.
The positive parameter s is called the spread w.r.t to interest rate r.
Let us find it.

$$
s=-\ln (1-p)=p+o(p)
$$

