Lecture 17

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 17

(1) Bond Pricing with Known Interest Rates and Dividend Payments
(2) Zero-Coupon Bond Pricing

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

If there is no dividend payment, the bond is known as a zero-coupon bond.

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

If there is no dividend payment, the bond is known as a zero-coupon bond.
Let us introduce the following notation
$V(t)$ is the value of the bond,

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

If there is no dividend payment, the bond is known as a zero-coupon bond.
Let us introduce the following notation
$V(t)$ is the value of the bond, $r(t)$ is the interest rate,

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

If there is no dividend payment, the bond is known as a zero-coupon bond.
Let us introduce the following notation
$V(t)$ is the value of the bond, $r(t)$ is the interest rate, $K(t)$ is the coupon payment.

Bond Pricing Equation

- Definition. A bond is a contract that yields a known amount (nominal, principal or face value) on the maturity date, $t=T$. The bond pays the dividends at fixed times.

If there is no dividend payment, the bond is known as a zero-coupon bond.
Let us introduce the following notation
$V(t)$ is the value of the bond, $r(t)$ is the interest rate, $K(t)$ is the coupon payment.

Equation for the bond price is

$$
\frac{d V}{d t}=r(t) V-K(t)
$$

The final condition: $\quad V(T)=F$.

Zero-Coupon Bond Pricing

Let us consider the case when the dividend payment $K(t)=0$.
The solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Zero-Coupon Bond Pricing

Let us consider the case when the dividend payment $K(t)=0$.
The solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us show this by integration $\frac{d V}{V}=r(t) d t$ from t to T.

Zero-Coupon Bond Pricing

Let us consider the case when the dividend payment $K(t)=0$.
The solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us show this by integration $\frac{d V}{V}=r(t) d t$ from t to T.
$\ln V(T)-\ln V(t)=\int_{t}^{T} r(s) d s$

Zero-Coupon Bond Pricing

Let us consider the case when the dividend payment $K(t)=0$.
The solution of the equation $\frac{d V}{d t}=r(t) V$ with $V(T)=F$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)
$$

Let us show this by integration $\frac{d V}{V}=r(t) d t$ from t to T.
$\ln V(T)-\ln V(t)=\int_{t}^{T} r(s) d s \quad$ or $\quad \ln (V(t) / F)=-\int_{t}^{T} r(s) d s$.

Example

A zero coupon bond, V, issued at $t=0$, is worth $V(1)=1$ at $t=1$. Find the bond price $V(t)$ at time $t<1$ and $V(0)$, when the continuous interest rate is

$$
r(t)=t^{2}
$$

Example

A zero coupon bond, V, issued at $t=0$, is worth $V(1)=1$ at $t=1$. Find the bond price $V(t)$ at time $t<1$ and $V(0)$, when the continuous interest rate is

$$
r(t)=t^{2}
$$

Solution: $T=1$; one can find

$$
\int_{t}^{1} r(s) d s=\int_{t}^{1} s^{2} d s=\frac{1}{3}-\frac{1}{3} t^{3}
$$

Example

A zero coupon bond, V, issued at $t=0$, is worth $V(1)=1$ at $t=1$. Find the bond price $V(t)$ at time $t<1$ and $V(0)$, when the continuous interest rate is

$$
r(t)=t^{2}
$$

Solution: $T=1$; one can find

$$
\int_{t}^{1} r(s) d s=\int_{t}^{1} s^{2} d s=\frac{1}{3}-\frac{1}{3} t^{3}
$$

Therefore

$$
V(t)=\exp \left(-\int_{t}^{1} r(s) d s\right)=\exp \left(\frac{t^{3}}{3}-\frac{1}{3}\right)
$$

Example

A zero coupon bond, V, issued at $t=0$, is worth $V(1)=1$ at $t=1$. Find the bond price $V(t)$ at time $t<1$ and $V(0)$, when the continuous interest rate is

$$
r(t)=t^{2}
$$

Solution: $T=1$; one can find

$$
\int_{t}^{1} r(s) d s=\int_{t}^{1} s^{2} d s=\frac{1}{3}-\frac{1}{3} t^{3}
$$

Therefore

$$
\begin{aligned}
V(t) & =\exp \left(-\int_{t}^{1} r(s) d s\right)=\exp \left(\frac{t^{3}}{3}-\frac{1}{3}\right) \\
V(0) & =\exp \left(-\frac{1}{3}\right)=0.7165
\end{aligned}
$$

Bond Pricing for $K(t)>0$

Let us consider the case when the dividend payment $K(t)>0$. The solution of the equation $\frac{d V}{d t}=r(t) V-K(t)$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)+V_{1}(t)
$$

Bond Pricing for $K(t)>0$

Let us consider the case when the dividend payment $K(t)>0$. The solution of the equation $\frac{d V}{d t}=r(t) V-K(t)$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)+V_{1}(t)
$$

where $V_{1}(t)=C(t) \exp \left(-\int_{t}^{T} r(s) d s\right)$.

Bond Pricing for $K(t)>0$

Let us consider the case when the dividend payment $K(t)>0$. The solution of the equation $\frac{d V}{d t}=r(t) V-K(t)$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)+V_{1}(t)
$$

where $V_{1}(t)=C(t) \exp \left(-\int_{t}^{T} r(s) d s\right)$.
To find $C(t)$ we need to substitute $V_{1}(t)$ into the equation

$$
\frac{d V_{1}}{d t}=r(t) V_{1}-K(t)
$$

(tutorial exercise 8)

Bond Pricing for $K(t)>0$

Let us consider the case when the dividend payment $K(t)>0$. The solution of the equation $\frac{d V}{d t}=r(t) V-K(t)$ can be written as

$$
V(t)=F \exp \left(-\int_{t}^{T} r(s) d s\right)+V_{1}(t)
$$

where $V_{1}(t)=C(t) \exp \left(-\int_{t}^{T} r(s) d s\right)$.
To find $C(t)$ we need to substitute $V_{1}(t)$ into the equation

$$
\frac{d V_{1}}{d t}=r(t) V_{1}-K(t)
$$

(tutorial exercise 8)
The explicit solution is

$$
V(t)=\exp \left(-\int_{t}^{T} r(s) d s\right)\left[F+\int_{t}^{T} K(y) \exp \left(\int_{y}^{T} r(s) d s\right) d y\right]
$$

