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Option on Dividend-paying Stock

We assume that in a time dt the underlying stock pays out a dividend

D0Sdt,

where D0 is a constant dividend yield.
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Option on Dividend-paying Stock

We assume that in a time dt the underlying stock pays out a dividend

D0Sdt,

where D0 is a constant dividend yield.

Now, we set up a portfolio consisting of a long position in one call option
and a short position in ∆ shares.

The value is Π = C − ∆S .

The change in the value of this portfolio in the time interval dt:

dΠ = dC − ∆dS − ∆D0Sdt.
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Itô’s Lemma and Elimination of Risk

Using Itô’s Lemma:

dC =

(

∂C

∂t
+

1

2
σ2

S
2 ∂2C

∂S2

)

dt +
∂C

∂S
dS
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We can eliminate the random component in dΠ by choosing ∆ = ∂C

∂S
.
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Modified Black-Scholes Equation

This choice results in a risk-free portfolio Π = C − S
∂C

∂S
whose increment

is dΠ =
(

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 − D0S
∂C

∂S

)

dt.
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• No-Arbitrage Principle: the return from this portfolio must be rdt.
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Sergei Fedotov (University of Manchester) 20912 2010 5 / 9



Modified Black-Scholes Equation

This choice results in a risk-free portfolio Π = C − S
∂C

∂S
whose increment

is dΠ =
(

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 − D0S
∂C

∂S

)

dt.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

dΠ
Π = rdt or ∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 − D0S
∂C

∂S
= r

(

C − S
∂C

∂S

)

.

Sergei Fedotov (University of Manchester) 20912 2010 5 / 9



Modified Black-Scholes Equation

This choice results in a risk-free portfolio Π = C − S
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whose increment

is dΠ =
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Π = rdt or ∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 − D0S
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C − S
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Thus, we obtain the modified Black-Scholes PDE:

∂C

∂t
+

1

2
σ2

S
2 ∂2C

∂S2
+ (r − D0)S

∂C

∂S
− rC = 0.
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Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

C (S , t) = e
−D0(T−t)

C1(S , t).
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Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form
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−D0(T−t)

C1(S , t).

We prove that C1(S , t) satisfies the Black-Scholes equation with r

replaced by r − D0.
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Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

C (S , t) = e
−D0(T−t)

C1(S , t).

We prove that C1(S , t) satisfies the Black-Scholes equation with r

replaced by r − D0.

If we substitute C (S , t) = e−D0(T−t)C1(S , t) into the modified
Black-Scholes equation, we find the equation for C1(S , t) in the form
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Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

C (S , t) = e
−D0(T−t)

C1(S , t).

We prove that C1(S , t) satisfies the Black-Scholes equation with r

replaced by r − D0.

If we substitute C (S , t) = e−D0(T−t)C1(S , t) into the modified
Black-Scholes equation, we find the equation for C1(S , t) in the form

∂C1

∂t
+

1

2
σ2

S
2 ∂2C1

∂S2
+ (r − D0)

∂C1

∂S
− (r − D0)C1 = 0

. The auxiliary function C1(S , t) is the value of a European Call option
with the interest rate r − D0.
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Solution to Modified Black-Scholes Equation

Problem sheet 7: show that the modified Black-Scholes equation has the
explicit solution for the European call

C (S , t) = Se
−D0(T−t)

N (d10) − Ee
−r(T−t)

N (d20) ,

where

d10 =
ln (S/E ) +

(

r − D0 + σ2/2
)

(T − t)

σ
√

T − t
, d20 = d10 − σ

√
T − t.
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American Put Option

Recall that An American Option is one that may be exercised at any time
prior to expire (t = T ).
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American Put Option

Recall that An American Option is one that may be exercised at any time
prior to expire (t = T ).

• The American put option value must be greater than or equal to the
payoff function.

If P < max(E − S , 0), then there is obvious arbitrage opportunity.
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American Put Option

American put problem can be written as as a free boundary problem.

We divide the price axis S into two distinct regions:

0 ≤ S < Sf (t) and Sf (t) < S < ∞,

where Sf (t) is the exercise boundary. Note that we do not know a priori
the value of Sf (t).
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American Put Option

American put problem can be written as as a free boundary problem.

We divide the price axis S into two distinct regions:

0 ≤ S < Sf (t) and Sf (t) < S < ∞,

where Sf (t) is the exercise boundary. Note that we do not know a priori
the value of Sf (t).

When 0 ≤ S < Sf (t), the early exercise is optimal: put option value is
P(S , t) = E − S .

When S > Sf (t), the early exercise is not optimal, and P(S , t) obeys the
Black-Scholes equation.

The boundary conditions at S = Sf (t) are

P (Sf (t), t) = max (E − Sf (t), 0) ,
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American Put Option

American put problem can be written as as a free boundary problem.

We divide the price axis S into two distinct regions:

0 ≤ S < Sf (t) and Sf (t) < S < ∞,

where Sf (t) is the exercise boundary. Note that we do not know a priori
the value of Sf (t).

When 0 ≤ S < Sf (t), the early exercise is optimal: put option value is
P(S , t) = E − S .

When S > Sf (t), the early exercise is not optimal, and P(S , t) obeys the
Black-Scholes equation.

The boundary conditions at S = Sf (t) are

P (Sf (t), t) = max (E − Sf (t), 0) ,
∂P

∂S
(Sf (t), t) = −1.

Sergei Fedotov (University of Manchester) 20912 2010 9 / 9


