Lecture 16

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 16

(1) Option on Dividend-paying Stock
(2) American Put Option

Option on Dividend-paying Stock

We assume that in a time $d t$ the underlying stock pays out a dividend

$$
D_{0} S d t
$$

where D_{0} is a constant dividend yield.

Option on Dividend-paying Stock

We assume that in a time $d t$ the underlying stock pays out a dividend

$$
D_{0} S d t
$$

where D_{0} is a constant dividend yield.
Now, we set up a portfolio consisting of a long position in one call option and a short position in Δ shares.

The value is $\Pi=C-\Delta S$.

Option on Dividend-paying Stock

We assume that in a time $d t$ the underlying stock pays out a dividend

$$
D_{0} S d t
$$

where D_{0} is a constant dividend yield.
Now, we set up a portfolio consisting of a long position in one call option and a short position in Δ shares.

The value is $\Pi=C-\Delta S$.
The change in the value of this portfolio in the time interval $d t$:

$$
d \Pi=d C-\Delta d S-\Delta D_{0} S d t
$$

Itô's Lemma and Elimination of Risk

Using Itô's Lemma:

$$
d C=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t+\frac{\partial C}{\partial S} d S
$$

Itô's Lemma and Elimination of Risk

Using Itô's Lemma:

$$
d C=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t+\frac{\partial C}{\partial S} d S
$$

we find

$$
d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t+\frac{\partial C}{\partial S} d S-\Delta d S
$$

Itô's Lemma and Elimination of Risk

Using Itô's Lemma:

$$
d C=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t+\frac{\partial C}{\partial S} d S
$$

we find

$$
d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t+\frac{\partial C}{\partial S} d S-\Delta d S
$$

We can eliminate the random component in $d \Pi$ by choosing $\Delta=\frac{\partial C}{\partial S}$.

Modified Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=C-S \frac{\partial C}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t$.

Modified Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=C-S \frac{\partial C}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be $r d t$.

$$
\frac{d \Pi}{\Pi}=r d t
$$

Modified Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=C-S \frac{\partial C}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt. $\frac{d \Pi}{\Pi}=r d t$ or $\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}=r\left(C-S \frac{\partial C}{\partial S}\right)$.

Modified Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=C-S \frac{\partial C}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t \text { or } \frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}-D_{0} S \frac{\partial C}{\partial S}=r\left(C-S \frac{\partial C}{\partial S}\right) .
$$

Thus, we obtain the modified Black-Scholes PDE:

$$
\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+\left(r-D_{0}\right) S \frac{\partial C}{\partial S}-r C=0
$$

Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

$$
C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)
$$

Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

$$
C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)
$$

We prove that $C_{1}(S, t)$ satisfies the Black-Scholes equation with r replaced by $r-D_{0}$.

Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

$$
C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)
$$

We prove that $C_{1}(S, t)$ satisfies the Black-Scholes equation with r replaced by $r-D_{0}$.

If we substitute $C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)$ into the modified Black-Scholes equation, we find the equation for $C_{1}(S, t)$ in the form

$$
\frac{\partial C_{1}}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C_{1}}{\partial S^{2}}+\left(r-D_{0}\right) \frac{\partial C_{1}}{\partial S}-\left(r-D_{0}\right) C_{1}=0
$$

Solution to Modified Black-Scholes Equation

Let us find the solution to modified Black-Scholes equation in the form

$$
C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)
$$

We prove that $C_{1}(S, t)$ satisfies the Black-Scholes equation with r replaced by $r-D_{0}$.

If we substitute $C(S, t)=e^{-D_{0}(T-t)} C_{1}(S, t)$ into the modified Black-Scholes equation, we find the equation for $C_{1}(S, t)$ in the form

$$
\frac{\partial C_{1}}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C_{1}}{\partial S^{2}}+\left(r-D_{0}\right) \frac{\partial C_{1}}{\partial S}-\left(r-D_{0}\right) C_{1}=0
$$

. The auxiliary function $C_{1}(S, t)$ is the value of a European Call option with the interest rate $r-D_{0}$.

Solution to Modified Black-Scholes Equation

Problem sheet 7: show that the modified Black-Scholes equation has the explicit solution for the European call

$$
C(S, t)=S e^{-D_{0}(T-t)} N\left(d_{10}\right)-E e^{-r(T-t)} N\left(d_{20}\right)
$$

where

$$
d_{10}=\frac{\ln (S / E)+\left(r-D_{0}+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}, \quad d_{20}=d_{10}-\sigma \sqrt{T-t}
$$

American Put Option

Recall that An American Option is one that may be exercised at any time prior to expire $(t=T)$.

American Put Option

Recall that An American Option is one that may be exercised at any time prior to expire $(t=T)$.

- The American put option value must be greater than or equal to the payoff function.

If $P<\max (E-S, 0)$, then there is obvious arbitrage opportunity.

American Put Option

American put problem can be written as as a free boundary problem.
We divide the price axis S into two distinct regions:

$$
0 \leq S<S_{f}(t) \text { and } S_{f}(t)<S<\infty
$$

where $S_{f}(t)$ is the exercise boundary. Note that we do not know a priori the value of $S_{f}(t)$.

American Put Option

American put problem can be written as as a free boundary problem.
We divide the price axis S into two distinct regions:

$$
0 \leq S<S_{f}(t) \text { and } S_{f}(t)<S<\infty
$$

where $S_{f}(t)$ is the exercise boundary. Note that we do not know a priori the value of $S_{f}(t)$.

When $0 \leq S<S_{f}(t)$, the early exercise is optimal: put option value is $P(S, t)=E-S$.

American Put Option

American put problem can be written as as a free boundary problem.
We divide the price axis S into two distinct regions:

$$
0 \leq S<S_{f}(t) \text { and } S_{f}(t)<S<\infty
$$

where $S_{f}(t)$ is the exercise boundary. Note that we do not know a priori the value of $S_{f}(t)$.

When $0 \leq S<S_{f}(t)$, the early exercise is optimal: put option value is $P(S, t)=E-S$.

When $S>S_{f}(t)$, the early exercise is not optimal, and $P(S, t)$ obeys the Black-Scholes equation.

American Put Option

American put problem can be written as as a free boundary problem.
We divide the price axis S into two distinct regions:

$$
0 \leq S<S_{f}(t) \text { and } S_{f}(t)<S<\infty
$$

where $S_{f}(t)$ is the exercise boundary. Note that we do not know a priori the value of $S_{f}(t)$.

When $0 \leq S<S_{f}(t)$, the early exercise is optimal: put option value is $P(S, t)=E-S$.

When $S>S_{f}(t)$, the early exercise is not optimal, and $P(S, t)$ obeys the Black-Scholes equation.

The boundary conditions at $S=S_{f}(t)$ are

$$
P\left(S_{f}(t), t\right)=\max \left(E-S_{f}(t), 0\right)
$$

American Put Option

American put problem can be written as as a free boundary problem.
We divide the price axis S into two distinct regions:

$$
0 \leq S<S_{f}(t) \text { and } S_{f}(t)<S<\infty
$$

where $S_{f}(t)$ is the exercise boundary. Note that we do not know a priori the value of $S_{f}(t)$.

When $0 \leq S<S_{f}(t)$, the early exercise is optimal: put option value is $P(S, t)=E-S$.

When $S>S_{f}(t)$, the early exercise is not optimal, and $P(S, t)$ obeys the Black-Scholes equation.

The boundary conditions at $S=S_{f}(t)$ are

$$
P\left(S_{f}(t), t\right)=\max \left(E-S_{f}(t), 0\right), \frac{\partial P}{\partial S}\left(S_{f}(t), t\right)=-1
$$

