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Replicating Portfolio

The aim is to show that the option price V (S , t) satisfies the
Black-Scholes equation
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Consider replicating portfolio of ∆ shares held long and N bonds held
short. The value of portfolio: Π = ∆S − NB . Recall that a pair (∆,N) is
called a trading strategy.

How to find (∆,N) such that Πt = Vt?

• SDE for a stock price S(t) : dS = µSdt + σSdW .

• Equation for a bond price B (t) : dB = rBdt.
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Derivation of the Black-Scholes Equation

By using the Ito’s lemma, we find the change in the option value
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Static Risk-free Portfolio

Let me remind you a Put-Call Parity. We set up the portfolio consisting of
long position in one stock, long position in one put and short position in
one call with the same T and E .
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Static Risk-free Portfolio

Let me remind you a Put-Call Parity. We set up the portfolio consisting of
long position in one stock, long position in one put and short position in
one call with the same T and E . The value of this portfolio is
Π = S + P − C .
The payoff for this portfolio is

ΠT = S + max (E − S , 0) − max (S − E , 0) = E

The payoff is always the same whatever the stock price is at t = T .

Using No Arbitrage Principle, we obtain

St + Pt − Ct = Ee
−r(T−t),

where Ct = C (St , t) and Pt = P (St , t).

This is an example of complete risk elimination.

Definition: The risk of a portfolio is the variance of the return.
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Dynamic Risk-Free Portfolio

Put-Call Parity is an example of complete risk elimination when we carry
out only one transaction in call/put options and underlying security.
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Put-Call Parity is an example of complete risk elimination when we carry
out only one transaction in call/put options and underlying security.

Let us consider the dynamic risk elimination procedure.

We could set up a portfolio consisting of a long position in one call option
and a short position in ∆ shares.

The value is Π = C − ∆S .
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Dynamic Risk-Free Portfolio

Put-Call Parity is an example of complete risk elimination when we carry
out only one transaction in call/put options and underlying security.

Let us consider the dynamic risk elimination procedure.

We could set up a portfolio consisting of a long position in one call option
and a short position in ∆ shares.

The value is Π = C − ∆S .

We can eliminate the random component in Π by choosing

∆ =
∂C

∂S
.

This is a ∆-hedging! It requires a continuous rebalancing of a number of
shares in the portfolio Π.
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