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Lecture 13

1 Boundary Conditions for Call and Put Options

2 Exact Solution to Black-Scholes Equation
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Boundary Conditions

We use C (S , t) and P(S , t) for call and put option. Boundary conditions
are applied for zero stock price S = 0 and S → ∞.
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Boundary Conditions

We use C (S , t) and P(S , t) for call and put option. Boundary conditions
are applied for zero stock price S = 0 and S → ∞.

• Boundary conditions for a call option:

C (0, t) = 0 and C (S , t) → S as S → ∞.

The call option is likely to be exercised as S → ∞

• Boundary conditions for a put option:

P(0, t) = Ee−r(T−t). We evaluate the present value of E .

P(S , t) → 0 as S → ∞.
As stock price S → ∞, then put option is unlikely to be exercised.
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Exact solution

The Black-Scholes equation
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with appropriate final and boundary conditions has the explicit solution:

C (S , t) = SN (d1) − Ee−r(T−t)N (d2) ,
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The European call value C (S , t) by K. Rubash
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Example

Calculate the price of a three-month European call option on a stock with
a strike price of $25 when the current stock price is $21.6 The volatility is
35% and risk-free interest rate is 1% p.a.
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√

T
=

ln( 21.6
25 )+(0.01+(0.35)2×0.5))×0.25

0.35×
√

0.25
≈ −0.7335

d2 = d1 − σ
√

T = −0.7335 − 0.35 ×
√

0.25 ≈ −0.9085

Since
N (−0.7335) ≈ 0.2316, N (−0.9085) ≈ 0.1818,

we obtain

C0 ≈ 21.6 × 0.2316 − 25 × e−0.01×0.25 × 0.1818 = 0.4689
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Let us find the limit

lim
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C (S , t).
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In the limit σ → ∞, d1 → ∞.

Since d2 = d1 − σ
√

T − t, in the limit σ → ∞, d2 → −∞

Thus limσ→∞ N (d1) = 1 and limσ→∞ N(d2) = 0.
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In the limit σ → ∞, d1 → ∞.

Since d2 = d1 − σ
√

T − t, in the limit σ → ∞, d2 → −∞

Thus limσ→∞ N (d1) = 1 and limσ→∞ N(d2) = 0.

Therefore limσ→∞ C (S , t) = S . This is an upper bound for call option!!!
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