Lecture 12

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 12

(1) Black-Scholes Model
(2) Black-Scholes Equation

The Black-Scholes model for option pricing was developed by Fischer Black, Myron Scholes in the early 1970s. This model is the most important result in financial mathematics.

Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ, time to expiration T, and risk-free interest rate r.

This model involves the following explicit assumptions:

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $d S=\mu S d t+\sigma S d W$. .
- No transaction costs.

Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ, time to expiration T, and risk-free interest rate r.

This model involves the following explicit assumptions:

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $d S=\mu S d t+\sigma S d W$. .
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.

Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ, time to expiration T, and risk-free interest rate r.

This model involves the following explicit assumptions:

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $d S=\mu S d t+\sigma S d W$. .
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.
- Securities are perfectly divisible (i.e. one can buy any fraction of a share of stock).

Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ, time to expiration T, and risk-free interest rate r.

This model involves the following explicit assumptions:

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $d S=\mu S d t+\sigma S d W$. .
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.
- Securities are perfectly divisible (i.e. one can buy any fraction of a share of stock).
- No restrictions on short selling.

Basic Notation

We denote by $V(S, t)$ the value of an option. We use the notations $C(S, t)$ and $P(S, t)$ for call and put when the distinction is important.

Basic Notation

We denote by $V(S, t)$ the value of an option. We use the notations $C(S, t)$ and $P(S, t)$ for call and put when the distinction is important.

- The aim is to derive the famous Black-Scholes Equation:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Basic Notation

We denote by $V(S, t)$ the value of an option. We use the notations $C(S, t)$ and $P(S, t)$ for call and put when the distinction is important.

- The aim is to derive the famous Black-Scholes Equation:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Now, we set up a portfolio consisting of a long position in one option and a short position in Δ shares.

The value is $\Pi=V-\Delta S$.

Basic Notation

We denote by $V(S, t)$ the value of an option. We use the notations $C(S, t)$ and $P(S, t)$ for call and put when the distinction is important.

- The aim is to derive the famous Black-Scholes Equation:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Now, we set up a portfolio consisting of a long position in one option and a short position in Δ shares.

The value is $\Pi=V-\Delta S$.

- Let us find the number of shares Δ that makes this portfolio riskless.

Itô's Lemma and Elimination of Risk

The change in the value of this portfolio in the time interval $d t$: $d \Pi=d V-\Delta d S, \quad$ where $d S=\mu S d t+\sigma S d W$.

Itô's Lemma and Elimination of Risk

The change in the value of this portfolio in the time interval $d t$: $d \Pi=d V-\Delta d S, \quad$ where $d S=\mu S d t+\sigma S d W$.

Using Itô's Lemma:

$$
d V=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\mu S \frac{\partial V}{\partial S}\right) d t+\sigma S \frac{\partial V}{\partial S} d W
$$

Itô's Lemma and Elimination of Risk

The change in the value of this portfolio in the time interval $d t$: $d \Pi=d V-\Delta d S, \quad$ where $d S=\mu S d t+\sigma S d W$.

Using Itô's Lemma:

$$
d V=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\mu S \frac{\partial V}{\partial S}\right) d t+\sigma S \frac{\partial V}{\partial S} d W
$$

we find
$d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\mu S \frac{\partial V}{\partial S}-\mu S \Delta\right) d t+\left(\sigma S \frac{\partial V}{\partial S}-\Delta \sigma S\right) d W$.
The main question is how to eliminate the risk!!!

Itô's Lemma and Elimination of Risk

The change in the value of this portfolio in the time interval $d t$: $d \Pi=d V-\Delta d S, \quad$ where $d S=\mu S d t+\sigma S d W$.

Using Itô's Lemma:

$$
d V=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\mu S \frac{\partial V}{\partial S}\right) d t+\sigma S \frac{\partial V}{\partial S} d W
$$

we find
$d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+\mu S \frac{\partial V}{\partial S}-\mu S \Delta\right) d t+\left(\sigma S \frac{\partial V}{\partial S}-\Delta \sigma S\right) d W$.
The main question is how to eliminate the risk!!!
We can eliminate the random component in $d \Pi$ by choosing $\Delta=\frac{\partial V}{\partial S}$.

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t
$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r
$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be $r d t$.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r \quad \text { or } \quad \frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r\left(V-S \frac{\partial V}{\partial S}\right)
$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be $r d t$.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r \quad \text { or } \quad \frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r\left(V-S \frac{\partial V}{\partial S}\right)
$$

Thus, we obtain the Black-Scholes PDE:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r \quad \text { or } \quad \frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r\left(V-S \frac{\partial V}{\partial S}\right)
$$

Thus, we obtain the Black-Scholes PDE:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Scholes received the 1997 Nobel Prize in Economics.

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r \quad \text { or } \quad \frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r\left(V-S \frac{\partial V}{\partial S}\right)
$$

Thus, we obtain the Black-Scholes PDE:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Scholes received the 1997 Nobel Prize in Economics. It was not awarded to Black in 1997, because he died in 1995.

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi=V-S \frac{\partial V}{\partial S}$ whose increment is $d \Pi=\left(\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) d t$.

- No-Arbitrage Principle: the return from this portfolio must be rdt.

$$
\frac{d \Pi}{\Pi}=r d t \quad \text { or } \quad \frac{\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}}{V-S \frac{\partial V}{\partial S}}=r \quad \text { or } \quad \frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r\left(V-S \frac{\partial V}{\partial S}\right)
$$

Thus, we obtain the Black-Scholes PDE:

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
$$

Scholes received the 1997 Nobel Prize in Economics. It was not awarded to Black in 1997, because he died in 1995.
Black received a Ph.D. in applied mathematics from Harvard University.

The European call value $C(S, t)$

If PDE is of backward type, we must impose a final condition at $t=T$.

The European call value $C(S, t)$

If PDE is of backward type, we must impose a final condition at $t=T$. For a call option, we have $C(S, T)=\max (S-E, 0)$.

Value before explration at time t

