Lecture 12

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 12

Black-Scholes Model

Black-Scholes Equation

The Black-Scholes model for option pricing was developed by Fischer Black, Myron Scholes in the early 1970s. This model is the most important result in financial mathematics.

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ , time to expiration T, and risk-free interest rate r.

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $dS = \mu Sdt + \sigma SdW$.
- No transaction costs.

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ , time to expiration T, and risk-free interest rate r.

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $dS = \mu S dt + \sigma S dW$.
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ , time to expiration T, and risk-free interest rate r.

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $dS = \mu Sdt + \sigma SdW$.
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.
- Securities are perfectly divisible (i.e. one can buy any fraction of a share of stock).

The Black-Scholes model is used to calculate an option price using: stock price S, strike price E, volatility σ , time to expiration T, and risk-free interest rate r.

- The stock price follows a Geometric Brownian motion with constant expected return and volatility: $dS = \mu Sdt + \sigma SdW$.
- No transaction costs.
- The stock does not pay dividends.
- One can borrow and lend cash at a constant risk-free interest rate.
- Securities are perfectly divisible (i.e. one can buy any fraction of a share of stock).
- No restrictions on short selling.

• The aim is to derive the famous Black-Scholes Equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

• The aim is to derive the famous Black-Scholes Equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Now, we set up a portfolio consisting of a long position in one option and a short position in Δ shares.

The value is $\Pi = V - \Delta S$.

• The aim is to derive the famous Black-Scholes Equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Now, we set up a portfolio consisting of a long position in one option and a short position in Δ shares.

The value is $\Pi = V - \Delta S$.

• Let us find the number of shares Δ that makes this portfolio riskless.

The change in the value of this portfolio in the time interval dt: $d\Pi = dV - \Delta dS$, where $dS = \mu S dt + \sigma S dW$.

The change in the value of this portfolio in the time interval dt: $d\Pi = dV - \Delta dS$, where $dS = \mu S dt + \sigma S dW$.

Using Itô's Lemma:

$$dV = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S}\right) dt + \sigma S \frac{\partial V}{\partial S} dW,$$

The change in the value of this portfolio in the time interval dt: $d\Pi = dV - \Delta dS$, where $dS = \mu S dt + \sigma S dW$.

Using Itô's Lemma:

$$dV = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S}\right) dt + \sigma S \frac{\partial V}{\partial S} dW,$$

we find

$$d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S} - \mu S \Delta\right) dt + \left(\sigma S \frac{\partial V}{\partial S} - \Delta \sigma S\right) dW.$$

The main question is how to eliminate the risk!!!

The change in the value of this portfolio in the time interval dt: $d\Pi = dV - \Delta dS$, where $dS = \mu S dt + \sigma S dW$.

Using Itô's Lemma:

$$dV = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S}\right) dt + \sigma S \frac{\partial V}{\partial S} dW,$$

we find

$$d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S} - \mu S \Delta\right) dt + \left(\sigma S \frac{\partial V}{\partial S} - \Delta \sigma S\right) dW.$$

The main question is how to eliminate the risk!!!

We can eliminate the random component in $d\Pi$ by choosing $\Delta = \frac{\partial V}{\partial S}$.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

 $\frac{d\Pi}{\Pi} = rdt$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi = V - S \frac{\partial V}{\partial S}$ whose increment is $d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) dt$.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi = V - S \frac{\partial V}{\partial S}$ whose increment is $d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) dt$.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r \quad \text{or} \quad \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r \left(V - S \frac{\partial V}{\partial S}\right).$$

Black-Scholes Equation

This choice results in a risk-free portfolio $\Pi = V - S \frac{\partial V}{\partial S}$ whose increment is $d\Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) dt$.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r \quad \text{or} \quad \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r \left(V - S \frac{\partial V}{\partial S}\right).$$

Thus, we obtain the Black-Scholes PDE:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r \quad \text{or} \quad \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r \left(V - S \frac{\partial V}{\partial S}\right).$$

Thus, we obtain the Black-Scholes PDE:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Scholes received the 1997 Nobel Prize in Economics.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r \quad \text{or} \quad \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r \left(V - S \frac{\partial V}{\partial S}\right).$$

Thus, we obtain the Black-Scholes PDE:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Scholes received the 1997 Nobel Prize in Economics. It was not awarded to Black in 1997, because he died in 1995.

• No-Arbitrage Principle: the return from this portfolio must be rdt.

$$\frac{d\Pi}{\Pi} = rdt \quad \text{or} \quad \frac{\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}}{V - S \frac{\partial V}{\partial S}} = r \quad \text{or} \quad \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r \left(V - S \frac{\partial V}{\partial S}\right).$$

Thus, we obtain the Black-Scholes PDE:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Scholes received the 1997 Nobel Prize in Economics. It was not awarded to Black in 1997, because he died in 1995. Black received a Ph.D. in applied mathematics from Harvard University. If PDE is of backward type, we must impose a final condition at t = T.

If PDE is of backward type, we must impose a final condition at t = T. For a call option, we have $C(S, T) = \max(S - E, 0)$.

Value before expiration at time t

