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Lecture 12

1 Black-Scholes Model

2 Black-Scholes Equation

The Black-Scholes model for option pricing was developed by Fischer
Black, Myron Scholes in the early 1970s. This model is the most
important result in financial mathematics.
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Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock
price S , strike price E , volatility σ, time to expiration T , and risk-free
interest rate r .

This model involves the following explicit assumptions:

• The stock price follows a Geometric Brownian motion with constant
expected return and volatility: dS = µSdt + σSdW . .

• No transaction costs.
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Black - Scholes model

The Black-Scholes model is used to calculate an option price using: stock
price S , strike price E , volatility σ, time to expiration T , and risk-free
interest rate r .

This model involves the following explicit assumptions:

• The stock price follows a Geometric Brownian motion with constant
expected return and volatility: dS = µSdt + σSdW . .

• No transaction costs.

• The stock does not pay dividends.

• One can borrow and lend cash at a constant risk-free interest rate.

• Securities are perfectly divisible (i.e. one can buy any fraction of a share
of stock).

• No restrictions on short selling.
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Basic Notation

We denote by V (S , t) the value of an option. We use the notations
C (S , t) and P(S , t) for call and put when the distinction is important.
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Basic Notation

We denote by V (S , t) the value of an option. We use the notations
C (S , t) and P(S , t) for call and put when the distinction is important.

• The aim is to derive the famous Black-Scholes Equation:
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Now, we set up a portfolio consisting of a long position in one option and
a short position in ∆ shares.

The value is Π = V − ∆S .

• Let us find the number of shares ∆ that makes this portfolio riskless.
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Itô’s Lemma and Elimination of Risk

The change in the value of this portfolio in the time interval dt:
dΠ = dV − ∆dS , where dS = µSdt + σSdW .
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The main question is how to eliminate the risk!!!
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The main question is how to eliminate the risk!!!

We can eliminate the random component in dΠ by choosing ∆ = ∂V

∂S
.
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Black-Scholes Equation

This choice results in a risk-free portfolio Π = V − S
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Scholes received the 1997 Nobel Prize in Economics.
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Scholes received the 1997 Nobel Prize in Economics. It was not awarded
to Black in 1997, because he died in 1995.
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Scholes received the 1997 Nobel Prize in Economics. It was not awarded
to Black in 1997, because he died in 1995.
Black received a Ph.D. in applied mathematics from Harvard University.
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The European call value C (S , t)

If PDE is of backward type, we must impose a final condition at t = T .
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The European call value C (S , t)

If PDE is of backward type, we must impose a final condition at t = T .
For a call option, we have C (S ,T ) = max(S − E , 0).
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