Lecture 11

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Lecture 11

(1) American Put Option Pricing on Binomial Tree
(2) Replicating Portfolio

American Option

- An American Option is one that may be exercised at any time prior to expire $(t=T)$.

American Option

- An American Option is one that may be exercised at any time prior to expire $(t=T)$.
- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!

American Option

- An American Option is one that may be exercised at any time prior to expire $(t=T)$.
- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P<\max (E-S, 0)$, then there is obvious arbitrage opportunity.

American Option

- An American Option is one that may be exercised at any time prior to expire $(t=T)$.
- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P<\max (E-S, 0)$, then there is obvious arbitrage opportunity.
We can buy stock for S and option for P and immediately exercise the option by selling stock for E.

American Option

- An American Option is one that may be exercised at any time prior to expire $(t=T)$.
- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P<\max (E-S, 0)$, then there is obvious arbitrage opportunity.
We can buy stock for S and option for P and immediately exercise the option by selling stock for E.
$E-(P+S)>0$

American Put Option Pricing on Binomial Tree

We denote by P_{n}^{m} the n-th possible value of put option at time-step $m \Delta t$.

American Put Option Pricing on Binomial Tree

We denote by P_{n}^{m} the n-th possible value of put option at time-step $m \Delta t$.

- European Put Option:

$$
P_{n}^{m}=e^{-r \Delta t}\left(p P_{n+1}^{m+1}+(1-p) P_{n}^{m+1}\right)
$$

Here $0 \leq n \leq m$ and the risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}$.

American Put Option Pricing on Binomial Tree

We denote by P_{n}^{m} the n-th possible value of put option at time-step $m \Delta t$.

- European Put Option:

$$
P_{n}^{m}=e^{-r \Delta t}\left(p P_{n+1}^{m+1}+(1-p) P_{n}^{m+1}\right) .
$$

Here $0 \leq n \leq m$ and the risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}$.

- American Put Option:

$$
P_{n}^{m}=\max \left\{\max \left(E-S_{n}^{m}, 0\right), e^{-r \Delta t}\left(p P_{n+1}^{m+1}+(1-p) P_{n}^{m+1}\right)\right\}
$$

where S_{n}^{m} is the n-th possible value of stock price at time-step $m \Delta t$.

American Put Option Pricing on Binomial Tree

We denote by P_{n}^{m} the n-th possible value of put option at time-step $m \Delta t$.

- European Put Option:

$$
P_{n}^{m}=e^{-r \Delta t}\left(p P_{n+1}^{m+1}+(1-p) P_{n}^{m+1}\right) .
$$

Here $0 \leq n \leq m$ and the risk-neutral probability $p=\frac{e^{r \Delta t}-d}{u-d}$.

- American Put Option:

$$
P_{n}^{m}=\max \left\{\max \left(E-S_{n}^{m}, 0\right), e^{-r \Delta t}\left(p P_{n+1}^{m+1}+(1-p) P_{n}^{m+1}\right)\right\}
$$

where S_{n}^{m} is the n-th possible value of stock price at time-step $m \Delta t$.

- Final condition: $P_{n}^{N}=\max \left(E-S_{n}^{N}, 0\right)$, where $n=0,1,2, \ldots, N, E$ is the strike price.

Example: Evaluation of American Put Option on Two-Step Tree

We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of $\$ 52$ on a stock whose current price is $\$ 50$.

Example: Evaluation of American Put Option on Two-Step Tree

We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of $\$ 52$ on a stock whose current price is $\$ 50$.

In this case $u=1.2, d=0.8, r=0.05, E=52$.
Risk-neutral probability: $\quad p=\frac{e^{0.05}-0.8}{1.2-0.8}=0.6282$

Example: Evaluation of American Put Option on Two-Step Tree

$$
P_{u}=e^{-0.05 \times 1}(0.6282 \times 0+0.3718 \times 4)=1.4147
$$

Example: Evaluation of American Put Option on Two-Step Tree

$$
\begin{aligned}
& P_{u}=e^{-0.05 \times 1}(0.6282 \times 0+0.3718 \times 4)=1.4147 \\
& P_{d}=e^{-0.05 \times 1}(0.6282 \times 4+0.3718 \times 20)=9.4636
\end{aligned}
$$

Example: Evaluation of American Put Option on Two-Step Tree

$P_{u}=e^{-0.05 \times 1}(0.6282 \times 0+0.3718 \times 4)=1.4147$
$P_{d}=e^{-0.05 \times 1}(0.6282 \times 4+0.3718 \times 20)=9.4636$
Payoff: $E-S=52-40=12>9.4636$. Early exercise is optimal! $P_{d}=12$

Example: Evaluation of American Put Option on Two-Step Tree

$$
\begin{aligned}
& P_{u}=e^{-0.05 \times 1}(0.6282 \times 0+0.3718 \times 4)=1.4147 \\
& P_{d}=e^{-0.05 \times 1}(0.6282 \times 4+0.3718 \times 20)=9.4636
\end{aligned}
$$

Payoff: $E-S=52-40=12>9.4636$. Early exercise is optimal! $P_{d}=12$
$P_{0}=e^{-0.05 \times 1}(0.6282 \times 1.4147+0.3718 \times 12)=5.0894$

Example: Evaluation of American Put Option on Two-Step Tree

$P_{u}=e^{-0.05 \times 1}(0.6282 \times 0+0.3718 \times 4)=1.4147$
$P_{d}=e^{-0.05 \times 1}(0.6282 \times 4+0.3718 \times 20)=9.4636$
Payoff: $E-S=52-40=12>9.4636$. Early exercise is optimal! $P_{d}=12$
$P_{0}=e^{-0.05 \times 1}(0.6282 \times 1.4147+0.3718 \times 12)=5.0894$
Payoff: $E-S=52-50=2<5.0894$. Early exercise is not optimal at the initial node

Replicating Portfolio

The aim is to calculate the value of call option C_{0}.
Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_{T}=C_{T}=\max (S-E, 0)$

Replicating Portfolio

The aim is to calculate the value of call option C_{0}.
Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_{T}=C_{T}=\max (S-E, 0)$
To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_{t}=C_{t}$.

Replicating Portfolio

The aim is to calculate the value of call option C_{0}.
Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_{T}=C_{T}=\max (S-E, 0)$
To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_{t}=C_{t}$.
Consider replicating portfolio of Δ shares held long and N bonds held short.

Replicating Portfolio

The aim is to calculate the value of call option C_{0}.
Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_{T}=C_{T}=\max (S-E, 0)$
To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_{t}=C_{t}$.
Consider replicating portfolio of Δ shares held long and N bonds held short.
The value of portfolio: $\Pi=\Delta S-N B$. A pair (Δ, N) is called a trading strategy.

How to find (Δ, N) such that $\Pi_{T}=C_{T}$ and $\Pi_{0}=C_{0}$?

Example: One-Step Binomial Model.

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d$. At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

Example: One-Step Binomial Model.

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d$. At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

The value of portfolio: $\Pi=\Delta S-N B$.
When stock moves up: $\quad \Delta S_{0} u-N B_{0} e^{r T}=C_{u}$.
When stock moves down: $\Delta S_{0} d-N B_{0} e^{r T}=C_{d}$.

Example: One-Step Binomial Model.

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d$. At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

The value of portfolio: $\Pi=\Delta S-N B$.
When stock moves up: $\quad \Delta S_{0} u-N B_{0} e^{r T}=C_{u}$.
When stock moves down: $\Delta S_{0} d-N B_{0} e^{r T}=C_{d}$.
We have two equations for two unknown variables Δ and N.

Example: One-Step Binomial Model.

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d$. At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

The value of portfolio: $\Pi=\Delta S-N B$.
When stock moves up: $\quad \Delta S_{0} u-N B_{0} e^{r T}=C_{u}$.
When stock moves down: $\Delta S_{0} d-N B_{0} e^{r T}=C_{d}$.
We have two equations for two unknown variables Δ and N.
Current value: $C_{0}=\Delta S_{0}-N B_{0}$.

Example: One-Step Binomial Model.

Initial stock price is S_{0}. The stock price can either move up from S_{0} to $S_{0} u$ or down from S_{0} to $S_{0} d$. At time T, let the option price be C_{u} if the stock price moves up, and C_{d} if the stock price moves down.

The value of portfolio: $\Pi=\Delta S-N B$.
When stock moves up: $\quad \Delta S_{0} u-N B_{0} e^{r T}=C_{u}$.
When stock moves down: $\Delta S_{0} d-N B_{0} e^{r T}=C_{d}$.
We have two equations for two unknown variables Δ and N.
Current value: $C_{0}=\Delta S_{0}-N B_{0}$.
Prove: $C_{0}=e^{-r T}\left(p C_{u}+(1-p) C_{d}\right)$, where $p=\frac{e^{r T}-d}{u-d}$. (Exercise sheet 5)

