Lecture 11

Sergei Fedotov

20912 - Introduction to Financial Mathematics

Replicating Portfolio

- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!

- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P < \max(E - S, 0)$, then there is obvious arbitrage opportunity.

- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P < \max(E - S, 0)$, then there is obvious arbitrage opportunity.

We can buy stock for S and option for P and immediately exercise the option by selling stock for E.

- We should determine when it is best to exercise the option.
- It is not subjective! It can be determined in a systematic way!
- The American put option value must be greater than or equal to the payoff function.

If $P < \max(E - S, 0)$, then there is obvious arbitrage opportunity.

We can buy stock for S and option for P and immediately exercise the option by selling stock for E. E - (P + S) > 0

We denote by P_n^m the *n*-th possible value of put option at time-step $m\Delta t$.

We denote by P_n^m the *n*-th possible value of put option at time-step $m\Delta t$.

• European Put Option:

$$P_n^m = e^{-r\Delta t} \left(p P_{n+1}^{m+1} + (1-p) P_n^{m+1} \right).$$

Here $0 \le n \le m$ and the risk-neutral probability $p = \frac{e^{r \bigtriangleup t} - d}{u - d}$.

We denote by P_n^m the *n*-th possible value of put option at time-step $m\Delta t$.

• European Put Option:

$$P_n^m = e^{-r\Delta t} \left(p P_{n+1}^{m+1} + (1-p) P_n^{m+1} \right).$$

Here $0 \le n \le m$ and the risk-neutral probability $p = \frac{e^{r\Delta t} - d}{u - d}$.

• American Put Option:

$$P_n^m = \max\left\{\max(E - S_n^m, 0), e^{-r\Delta t} \left(pP_{n+1}^{m+1} + (1-p)P_n^{m+1}\right)\right\},\$$

where S_n^m is the *n*-th possible value of stock price at time-step $m\Delta t$.

We denote by P_n^m the *n*-th possible value of put option at time-step $m\Delta t$.

• European Put Option:

$$P_n^m = e^{-r\Delta t} \left(p P_{n+1}^{m+1} + (1-p) P_n^{m+1} \right).$$

Here $0 \le n \le m$ and the risk-neutral probability $p = \frac{e^{r\Delta t} - d}{u - d}$.

• American Put Option:

$${\mathcal P}_n^m = \max\left\{\max(E-S_n^m,0), e^{-r\Delta t}\left(p{\mathcal P}_{n+1}^{m+1} + (1-p){\mathcal P}_n^{m+1}
ight)
ight\},$$

where S_n^m is the *n*-th possible value of stock price at time-step $m\Delta t$.

• Final condition: $P_n^N = \max (E - S_n^N, 0)$, where n = 0, 1, 2, ..., N, E is the

strike price.

We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of \$52 on a stock whose current price is \$50.

We assume that over each of the next two years the stock price either moves up by 20% or moves down by 20%. The risk-free interest rate is 5%.

Find the value of a 2-year American put with a strike price of \$52 on a stock whose current price is \$50.

In this case u = 1.2, d = 0.8, r = 0.05, E = 52.

Risk-neutral probability: $p = \frac{e^{0.05} - 0.8}{1.2 - 0.8} = 0.6282$

 $P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147$

$$P_{\mu} = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147$$

 $P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636$

$$P_u = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147$$

$$P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636$$

Payoff: E - S = 52 - 40 = 12 > 9.4636. Early exercise is optimal! $P_d = 12$

$$P_{\mu} = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147$$

 $P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636$

Payoff: E - S = 52 - 40 = 12 > 9.4636. Early exercise is optimal! $P_d = 12$

 $P_0 = e^{-0.05 \times 1} (0.6282 \times 1.4147 + 0.3718 \times 12) = 5.0894$

$$P_{\mu} = e^{-0.05 \times 1} (0.6282 \times 0 + 0.3718 \times 4) = 1.4147$$

 $P_d = e^{-0.05 \times 1} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636$

Payoff: E - S = 52 - 40 = 12 > 9.4636. Early exercise is optimal! $P_d = 12$

 $P_0 = e^{-0.05 \times 1} (0.6282 \times 1.4147 + 0.3718 \times 12) = 5.0894$

Payoff: E - S = 52 - 50 = 2 < 5.0894. Early exercise is not optimal at the initial node

The aim is to calculate the value of call option C_0 .

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max(S - E, 0)$

The aim is to calculate the value of call option C_0 .

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max(S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.

The aim is to calculate the value of call option C_0 .

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max(S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.

Consider replicating portfolio of Δ shares held long and N bonds held short.

The aim is to calculate the value of call option C_0 .

Let us establish a portfolio of stocks and bonds in such a way that the payoff of a call option is completely replicated.

Final value: $\Pi_T = C_T = \max(S - E, 0)$

To prevent risk-free arbitrage opportunity, the current values should be identical. We say that the portfolio replicates the option.

The Law of One Price: $\Pi_t = C_t$.

Consider replicating portfolio of Δ shares held long and N bonds held short.

The value of portfolio: $\Pi = \Delta S - NB$. A pair (Δ , N) is called a trading strategy.

How to find (Δ, N) such that $\Pi_T = C_T$ and $\Pi_0 = C_0$?

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0 u - NB_0 e^{rT} = C_u$.

When stock moves down: $\Delta S_0 d - NB_0 e^{rT} = C_d$.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0 u - NB_0 e^{rT} = C_u$.

When stock moves down: $\Delta S_0 d - NB_0 e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0 u - NB_0 e^{rT} = C_u$.

When stock moves down: $\Delta S_0 d - NB_0 e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.

Current value: $C_0 = \Delta S_0 - NB_0$.

The value of portfolio: $\Pi = \Delta S - NB$.

When stock moves up: $\Delta S_0 u - NB_0 e^{rT} = C_u$.

When stock moves down: $\Delta S_0 d - NB_0 e^{rT} = C_d$.

We have two equations for two unknown variables Δ and N.

Current value: $C_0 = \Delta S_0 - NB_0$.

Prove:
$$C_0 = e^{-rT} \left(pC_u + (1-p)C_d \right)$$
, where $p = \frac{e^{rT} - d}{u - d}$. (Exercise sheet 5)